
Balaji

Advanced Problems in Mathematics Chapter 1 to 9

for IIT JEE Main and Advanced

by

Vikas Gupta and Pankaj Joshi

Advanced Problems in

MATHEMATICS

for

JEE (MAIN & ADVANCED)

by:

Vikas Gupta

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

Pankaj Joshi

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

CONTENTS

CALCULUS	
1. Function	3 – 29
2. Limit	30 – 44
3. Continuity, Differentiability and Differentiation	45 – 74
4. Application of Derivatives	75 – 97
5. Indefinite and Definite Integration	98 – 127
6. Area Under Curves	128 – 134
7. Differential Equations	135 – 144
ALGEBRA	
8. Quadratic Equations	147 – 176
9. Sequence and Series	177 – 197
10. Determinants	198 – 206
11. Complex Numbers	207 – 216
12. Matrices	217 – 224
13. Permutation and Combinations	225 – 233
14. Binomial Theorem	234 – 242
15. Probability	243 – 251
16. Logarithms	252 – 264

CO-ORDINATE GEOMETRY	HUI HARTES SEE
17. Straight Lines	267 – 280
18. Circle	281 – 295
19. Parabola	296 – 302
20. Ellipse	303 – 307
21. Hyperbola	308 – 312
TRIGONOMETRY	
22. Compound Angles	315 – 334
23. Trigonometric Equations	335 – 343
24. Solution of Triangles	
25. Inverse Trigonometric Functions	344 – 359 360 – 370

VECTOR & 3DIMENSIONAL GEOMETRY

26. Vector & 3Dimensional Geometry

373 – 389

Calculus

- 1. Funtion
- 2. Limit
- 3. Continuity, Differentiability and Differentiation
- **4.** Application of Derivatives
- **5.** Indefinite and Definite Integration
- 6. Area under Curves
- 7. Differential Equations

Chapter 1 - Function

FUNCTION

Exercise-1: Single Choice Problems

Range of the function $f(x) = \log (2 \log - (16\sin^2 x + 1))$ is:	

1.	Range of	the	functi	on f	(x)) = .	\log_2	(2-	\log_{\downarrow}	$_{/2}(16$	5 sin 2	x +	1)) is :	

- (a) [0,1]
- (b) $(-\infty, 1]$
- (c) [-1,1]
- (d) $(-\infty, \infty)$
- **2.** The value of a and b for which $|e^{|x-b|} a| = 2$, has four distinct solutions, are :

 - (a) $a \in (-3, \infty), b = 0$ (b) $a \in (2, \infty), b = 0$ (c) $a \in (3, \infty), b \in \mathbb{R}$ (d) $a \in (2, \infty), b = a$
- 3. The range of the function:

$$f(x) = \tan^{-1} x + \frac{1}{2}\sin^{-1} x$$

- (a) $(-\pi/2, \pi/2)$

- (b) $[-\pi/2, \pi/2] \{0\}$ (c) $[-\pi/2, \pi/2]$ (d) $(-3\pi/4, 3\pi/4)$
- **4.** Find the number of real ordered pair(s) (x, y) for which :

$$16^{x^2+y} + 16^{x+y^2} = 1$$

- (a) 0
- (b) 1
- (d) 3
- 5. The complete range of values of 'a' such that $\left(\frac{1}{2}\right)^{|x|} = x^2 a$ is satisfied for maximum number

of values of x is :

- (a) $(-\infty, -1)$
- (b) $(-\infty, \infty)$
- (c) (-1,1)
- **6.** For a real number x, let [x] denotes the greatest integer less than or equal to x. Let $f: R \to R$ be defined by $f(x) = 2x + [x] + \sin x \cos x$. Then f is:
 - (a) One-one but not onto

(b) Onto but not one-one

(c) Both one-one and onto

- (d) Neither one-one nor onto
- 7. The maximum value of $\sec^{-1}\left(\frac{7-5(x^2+3)}{2(x^2+2)}\right)$ is :
 - (a) $\frac{5\pi}{6}$
- (b) $\frac{5\pi}{12}$ (c) $\frac{7\pi}{12}$
- (d) $\frac{2\pi}{3}$

(c) $0 \le a < 1$

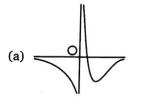
(d) 0 < a < 1

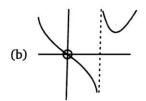
(a) $0 \le a \le 1$

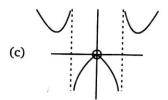
(b) $0 < a \le 1$

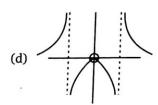
- **18.** If $f:(-\infty,2] \longrightarrow (-\infty,4]$, where f(x)=x(4-x), then $f^{-1}(x)$ is given by:

 - (a) $2-\sqrt{4-x}$ (b) $2+\sqrt{4-x}$
- (c) $-2 + \sqrt{4-x}$
- (d) $-2 \sqrt{4-x}$
- **19.** If $[5 \sin x] + [\cos x] + 6 = 0$, then range of $f(x) = \sqrt{3} \cos x + \sin x$ corresponding to solution set of the given equation is : (where [·] denotes greatest integer function)
 - (a) [-2,-1)
- (b) $\left(-\frac{3\sqrt{3}+2}{5},-1\right)$ (c) $[-2,-\sqrt{3})$
- (d) $\left(-\frac{3\sqrt{3}+4}{5},-1\right)$
- **20.** If $f: R \to R$, $f(x) = ax + \cos x$ is an invertible function, then complete set of values of a is:
 - (a) $(-2,-1] \cup [1,2)$ (b) [-1,1]
- (c) $(-\infty, -1] \cup [1, \infty)$ (d) $(-\infty, -2] \cup [2, \infty)$
- **21.** The range of function $f(x) = [1 + \sin x] + \left[2 + \sin \frac{x}{2}\right] + \left[3 + \sin \frac{x}{3}\right] + \dots + \left[n + \sin \frac{x}{n}\right] \forall x \in [0, \pi],$


 $n \in N$ ([·] denotes greatest integer function) is :


- (a) $\left\{ \frac{n^2 + n 2}{2}, \frac{n(n+1)}{2} \right\}$
- (b) $\left\{\frac{n(n+1)}{2}\right\}$
- (c) $\left\{\frac{n(n+1)}{2}, \frac{n^2+n+2}{2}, \frac{n^2+n+4}{2}\right\}$ (d) $\left\{\frac{n(n+1)}{2}, \frac{n^2+n+2}{2}\right\}$
- **22.** If $f: R \to R$, $f(x) = \frac{x^2 + ax + 1}{x^2 + x + 1}$, then the complete set of values of 'a' such that f(x) is onto is:
 - (a) $(-\infty, \infty)$
- (c) (0,∞)
- (d) not possible
- **23.** If f(x) and g(x) are two functions such that f(x) = [x] + [-x] and $g(x) = \{x\} \ \forall \ x \in R$ and h(x) = f(g(x)); then which of the following is incorrect?
 - [[-] denotes greatest integer function and {·} denotes fractional part function)
 - (a) f(x) and h(x) are identical functions
- (b) f(x) = g(x) has no solution
- (c) f(x) + h(x) > 0 has no solution
- (d) f(x) h(x) is a periodic function
- **24.** Number of elements in the range set of $f(x) = \left\lfloor \frac{x}{15} \right\rfloor \left[-\frac{15}{x} \right] \forall x \in (0, 90)$; (where [·] denotes greatest integer function):
 - (a) 5
- (b) 6
- (c) 7
- (d) Infinite


25. The graph of function f(x) is shown below:



Then the graph of $g(x) = \frac{1}{f(|x|)}$ is:

26. Which of the following function is homogeneous?

(a)
$$f(x) = x \sin y + y \sin x$$

(b)
$$g(x) = xe^{\frac{y}{x}} + ye^{\frac{x}{y}}$$

(c)
$$h(x) = \frac{xy}{x+y^2}$$

(d)
$$\phi(x) = \frac{x - y \cos x}{y \sin x + y}$$

27. Let $f(x) = \begin{bmatrix} 2x+3 & ; & x \le 1 \\ a^2x+1 & ; & x > 1 \end{bmatrix}$. If the range of f(x) = R (set of real numbers) then number of integral value(s), which a may take:

28. The maximum integral value of x in the domain of $f(x) = \log_{10}(\log_{1/3}(\log_4(x-5)))$ is :

29. Range of the function $f(x) = \log_2\left(\frac{4}{\sqrt{x+2} + \sqrt{2-x}}\right)$ is :

(b)
$$\left[\frac{1}{2}, 1\right]$$

(d)
$$\left[\frac{1}{4}, 1\right]$$

30. Number of integers statisfying the equation $|x^2 + 5x| + |x - x^2| = |6x|$ is:

31. Which of the following is not an odd function?

(a)
$$\ln \left(\frac{x^4 + x^2 + 1}{(x^2 + x + 1)^2} \right)$$

- (b) sgn(sgn(x))
- (c) $\sin(\tan x)$

(d)
$$f(x)$$
, where $f(x) + f\left(\frac{1}{x}\right) = f(x) \cdot f\left(\frac{1}{x}\right) \forall x \in \mathbb{R} - \{0\} \text{ and } f(2) = 33$

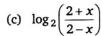
32. Which of the following function is periodic with fundamental period π ?

(a)
$$f(x) = \cos x + \left[\frac{\sin x}{2} \right]$$
; where [·] denotes greatest integer function

(b)
$$g(x) = \frac{\sin x + \sin 7x}{\cos x + \cos 7x} + |\sin x|$$

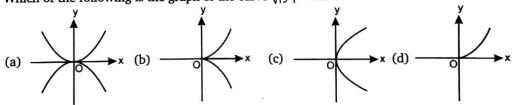
- (c) $h(x) = \{x\} + |\cos x|$; where $\{\cdot\}$ denotes fractional part function
- (d) $\phi(x) = |\cos x| + \ln(\sin x)$

33. Let $f: N \longrightarrow Z$ and $f(x) = \begin{bmatrix} \frac{x-1}{2} & \text{; when } x \text{ is odd} \\ -\frac{x}{2} & \text{; when } x \text{ is even} \end{bmatrix}$; then:


(a) f(x) is bijective

- (b) f(x) is injective but not surjective
- (c) f(x) is not injective but surjective
- (d) f(x) is neither injective nor surjective

34. Let g(x) be the inverse of $f(x) = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}}$ then g(x) be :


(a)
$$\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$

(a)
$$\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$
 (b) $-\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$ (c) $\log_2\left(\frac{2+x}{2-x}\right)$ (d) $\log_2\left(\frac{2-x}{2+x}\right)$

(d)
$$\log_2\left(\frac{2-x}{2+x}\right)$$

35. Which of the following is the graph of the curve $\sqrt{|y|} = x$ is ?

36. Range of $f(x) = \log_{[x]}(9 - x^2)$; where [] denotes G.I.F is :

- (b) $(-\infty, 2)$
- (c) $(-\infty, \log_2 5]$
- (d) $[\log_2 5, 3]$

37. If $e^x + e^{f(x)} = e$, then for f(x):

- (a) Domain is $(-\infty, 1)$ (b) Range is $(-\infty, 1]$
- (c) Domain is $(-\infty, 0]$ (d) Range is $(-\infty, 0]$

38. If high voltage current is applied on the field given by the graph y + |y| - x - |x| = 0. On which of the following curve a person can move so that he remains safe?

- (a) $y = x^2$
- (b) $y = \operatorname{sgn}(-e^2)$
- (c) $y = \log_{1/3} x$
- (d) y = m + |x|; m > 3

39. If $|f(x) + 6 - x^2| = |f(x)| + |4 - x^2| + 2$, then f(x) is necessarily non-negative for :

(a) $x \in [-2, 2]$

(b) $x \in (-\infty, -2) \cup (2, \infty)$

(c) $x \in [-\sqrt{6}, \sqrt{6}]$

(d) $x \in [-5, -2] \cup [2, 5]$

40. Let $f(x) = \cos(px) + \sin x$ be periodic, then p must be :

(a) Positive real number

(b) Negative real number

(c) Rational

(d) Prime

41. The domain of f(x) is (0, 1), therefore, the domain of $y = f(e^x) + f(\ln |x|)$ is :

(a)
$$\left(\frac{1}{e},1\right)$$

(c)
$$\left(-1, -\frac{1}{e}\right)$$

(c)
$$\left(-1, -\frac{1}{e}\right)$$
 (d) $(-e, -1) \cup (1, e)$

42. Let $A = \{1, 2, 3, 4\}$ and $f: A \to A$ satisfy f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 1.

Suppose $g: A \to A$ satisfies g(1) = 3 and $f \circ g = g \circ f$, then $g = g \circ f$

(d)
$$\{(1,3),(2,4),(3,2),(4,1)\}$$

43. The number of solutions of the equation $[y + [y]] = 2\cos x$ is : (where $y = \frac{1}{2} [\sin x + [\sin x + [\sin x]]]$ and $[\cdot] =$ greatest integer function)

(d) Infinite

44. The function,
$$f(x) = \begin{cases} \frac{(x^{2n})}{(x^{2n} \operatorname{sgn} x)^{2n+1}} \begin{pmatrix} \frac{1}{e^x} - e^{-\frac{1}{x}} \\ \frac{1}{e^x} - e^{-\frac{1}{x}} \end{pmatrix} & x \neq 0 \\ 1 & x = 0 \end{cases}$$

(a) Odd function

- (b) Even function
- (c) Neither odd nor even function
- (d) Constant function

45. Let f(1) = 1, and $f(n) = 2\sum_{r=1}^{n-1} f(r)$. Then $\sum_{r=1}^{m} f(r)$ is equal to :

(a)
$$\frac{3^m-1}{2}$$

(b)
$$3^{m}$$

(c)
$$3^{m-1}$$

(d)
$$\frac{3^{m-1}-1}{2}$$

46. Let $f(x) = \frac{x}{\sqrt{1+x^2}}$, then $\underbrace{fofofo....of}_{ntimes}(x)$ is:

(a)
$$\frac{x}{\sqrt{1 + \left(\sum_{r=1}^{n} r\right) x^2}}$$
 (b) $\frac{x}{\sqrt{1 + \left(\sum_{r=1}^{n} 1\right) x^2}}$ (c) $\left(\frac{x}{\sqrt{1 + x^2}}\right)^n$ (d) $\frac{nx}{\sqrt{1 + nx^2}}$

(b)
$$\frac{x}{\sqrt{1 + \left(\sum_{r=1}^{n} 1\right) x^2}}$$

(c)
$$\left(\frac{x}{\sqrt{1+x^2}}\right)^r$$

(d)
$$\frac{nx}{\sqrt{1+nx^2}}$$

47. Let $f: R \to R$, $f(x) = 2x + |\cos x|$, then f is :

(a) One-one and into

(b) One-one and onto

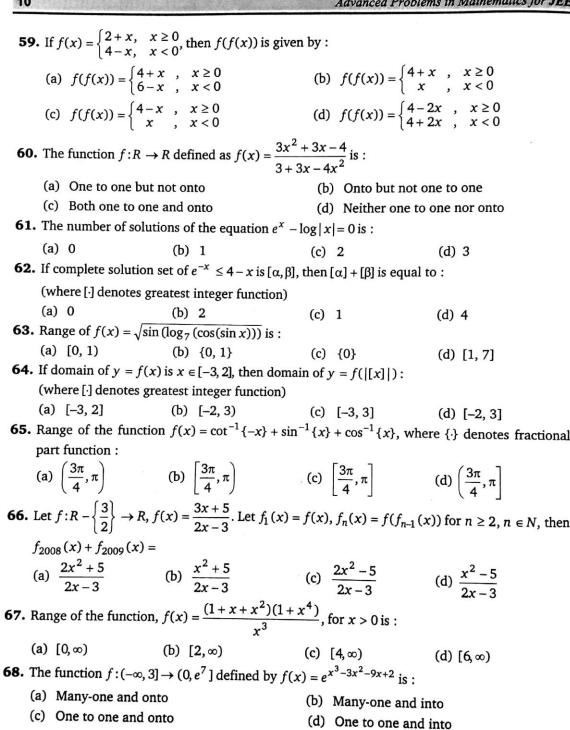
(c) Many-one and into

(d) Many-one and onto

48. Let $f: R \to R$, $f(x) = x^3 + x^2 + 3x + \sin x$, then f is:

(a) One-one and into

(b) One-one and onto

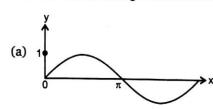

(c) Many-one and into

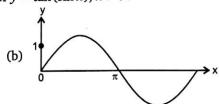
(d) Many-one and onto

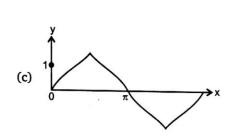
49. $f(x) = \{x\} + \{x+1\} + \{x+2\} + \dots + \{x+99\}$, then $[f(\sqrt{2})]$, (where $\{\cdot\}$ denotes fractional part function and [·] denotes the greatest integer function) is equal to :

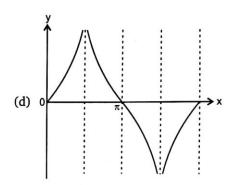
- (a) 5050
- (b) 4950
- (c) 41
- (d) 14

Function		A STATE OF STATE	9
50. If $ \cot x + \csc x = \cot x $	$x + \csc x ; x \in [0, 2\pi]$	then complete set of	values of x is:
(a) [0, π]		(b) $\left(0,\frac{\pi}{2}\right]$	
(c) $\left(0,\frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2},2\pi\right)$		(d) $\left(\pi, \frac{3\pi}{2}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right]$	_
51. The function $f(x) = 0$ has sum of all the eight solu	as eight distinct real solution of $f(x) = 0$ is :	ution and f also satisfy	f(4+x) = f(4-x). The
	(b) 32	(c) 16	(d) 15
52. Let $f(x)$ be a polynomia $f(3) = 3$, $f(4) = 2$, $f(5)$			h that $f(1) = 5$, $f(2) = 4$,
(a) 0	(b) 24	(c) 120	(d) 720
53. Let $f: A \rightarrow B$ be a function following is not possible	tion such that $f(x) = \sqrt{x}$ e?		
(a) $A = [3, 4]$	(b) $A = [2, 3]$	(c) $A = [2, 2\sqrt{3}]$	(d) $[2, 2\sqrt{2}]$
54. The number of positive	integral values of x sat	tisfying $\left[\frac{x}{9}\right] = \left[\frac{x}{11}\right]$ is:	
(where [·] denotes grea	test integer function)		
(a) 21	(b) 22	(c) 23	(d) 24
55. The domain of function	on $f(x) = \log_{\left[x + \frac{1}{2}\right]} (2x^2)$	+x-1), where [·] den	otes the greatest integer
function is:			
[2]	(b) (2,∞)	(c) $\left(-\frac{1}{2},\infty\right)-\left\{\frac{1}{2}\right\}$	(-)
56. The solution set of th	e equation $[x]^2 + [x + $	1] - 3 = 0, where [·] re	presents greatest integer
function is:			
(a) $[-1,0) \cup [1,2)$	(b) $[-2,-1) \cup [1,2)$	(c) [1, 2)	(d) $[-3, -2) \cup [2, 3)$
57. Which among the follo	wing relations is a fund	ction ?	
(a) $x^2 + y^2 = r^2$	(b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = r^2$	(c) $y^2 = 4ax$	(d) $x^2 = 4ay$
(where a, b, r are const	ants)		
58. A function $f: R \to R$ is	defined as $f(x) = 3x^2$	+ 1. Then $f^{-1}(x)$ is:	9K)
(a) $\frac{\sqrt{x-1}}{3}$		(b) $\frac{1}{3}\sqrt{x} - 1$	
(c) f^{-1} does not exist	t	(d) $\sqrt{\frac{x-1}{3}}$	




69.	If $f(x) = \sin \left\{ \log \left(\frac{\sqrt{4}}{1} \right) \right\}$	$\left.\frac{-x^2}{-x}\right\}$; $x \in R$, then rang	e of $f(x)$	is given by :	
	(a) [-1, 1]	(b) [0, 1]	(c) (-		(d) None of these
70.	Set of values of ' a ' for	which the function $f:R$	$\rightarrow R$, give	$en by f(x) = x^3$	$x^{2} + (a+2)x^{2} + 3ax + 10$
	is one-one is given by	:			
	(a) $(-\infty,1] \cup [4,\infty)$			·	(d) [-∞, 4]
71.	If the range of the fun	$ction f(x) = tan^{-1}(3x^2 + $	+bx+c)	is $\left[0,\frac{\pi}{2}\right]$; (dom	ain is R), then:
	(a) $b^2 = 3c$	(b) $b^2 = 4c$	(c) b^2	=12c	$(d) b^2 = 8c$
72 .	Let $f(x) = \sin^{-1} x - \cos^{-1} x$	$os^{-1} x$, then the set of val	ues of k	for which of $ f $	(x) = k has exactly two
	distinct solutions is:				
	80 77 1	(b) $\left(0,\frac{\pi}{2}\right)$		- /	
73.	Let $f: R \to R$ is define	d by $f(x) = \begin{cases} (x+1) \\ \ln x + (b^2 - a) \end{cases}$	3b + 10	; $x \le 1$; $x > 1$ If $f(x)$	x) is invertible, then the
	set of all values of ' b '	is:			
	(a) {1, 2}	(b) φ			(d) None of these
74.	Let $f(x)$ is continu	ous function with rang	ge [-1,	1] and $f(x)$ i	s defined $\forall x \in R$. If
	$g(x) = \frac{e^{f(x)} - e^{ f(x) }}{e^{f(x)} + e^{ f(x) }},$	then range of $g(x)$ is :			
	(a) [0, 1]		(b) 0,	$\frac{e^2+1}{e^2-1}$	
	(c) $\left[0, \frac{e^2 - 1}{e^2 + 1}\right]$		(d) $\left[\frac{-\epsilon}{e}\right]$	$\left[\frac{e^2+1}{2+1}, 0\right]$	
75.	Consider all functions	$f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$	3, 4} w	hich are one-or	ne, onto and satisfy the
	following property:				, and mid buildly the
	- INDE	+ 1) is even, $k = 1, 2, 3$.			
	The number of such fu				
	(a) 4	(b) 8	(c) 12		(d) 16
76.		$f: R - \{1\} \to R - \{2\} \text{ given }$	ven by f	$(x) = \frac{2x}{x-1}.$ The	en:
	(a) f is one-one but i			s onto but not	
	(c) f is neither one-o	ne nor onto	(d) f i	s both one-one	and onto


	(a)	[-2, 4]	(b) [-1, 2	2]	(c)	[-3, 9]	(d) [-2, 2]
78	8. Let	$f:R\to R$ as	(b) $[-1, x]$ and $f(x) = \frac{x(x^4 - x^4)}{x^4 - x^4}$	+1)(x+1)+3	c ⁴ + 2	then $f(x)$ i	is:
	(a) (c)	One-one, in One-one, or $f(x)$ be define	to ito	x ² + x + 1	(b)	Many-one,	onto
			$\begin{cases} x \\ x-1 + x-2 \\ x-3 \end{cases}$	$ \begin{array}{c c} 0 \le x < 1 \\ 1 \le x < 2 \\ 2 \le x < 3 \end{array} $	1 ! 3		
	The	range of fun	$\cot g(x) = \sin(x)$	7(f(x)) is:			
		[0, 1]		0]			(d) [-1, 1]
80	If [x integ	:] ² -7[x] + 10 ger function)	$0 < 0$ and $4[y]^2$:	-16[<i>y</i>]+7<	0, the	ax[x+y] can	nnot be ([·] denotes greatest
	(a)	7	(b) 8	ام	(c)	9 -x	(d) both (b) and (c)
81	. Let <i>j</i>	$f: R \to R$ be a	function define	d by $f(x) = \frac{c}{e}$	x + e	$\frac{1}{-x}$, then	
	(a)	f(x) is many	one, onto funct	ion	(b)	f(x) is man	y one, into function
			asing function ∀		(d)	f(x) is biject	tive function
82	. The i	function $f(x)$	satisfy the equa	tion $f(1-x)$	+ 2f(:	$(x) = 3x \ \forall \ x \in$	R, then $f(0) =$
	(a)	-2	(b) −1		(c)	0	(d) 1
83.	Let f	$: [0, 5] \rightarrow [0, 5]$	be an invertible	le function de	fined	by $f(x) = ax$	$c^2 + bx + c$, where $a, b, c \in R$,
	abc ≠	0, then one	of the root of the	e equation cx^2	$^2 + bx$	a + a = 0 is :	,
	(a) ((b) b		(c) (:	(d) $a+b+c$
84.	Let f	$(x) = x^2 + \lambda x$	$x + \mu \cos x$, λ bein	ng an integer a	and µ	is a real nun	nber. The number of ordered
	pairs	(λ,μ) for wh oots is :	ich the equation	f(x) = 0 and	f(f(:	r)) = 0 have	the same (non empty) set of
	(a) 2		(b) 3		(c) 4	1	(d) 6
35.	Consi follow	der all func ving property	tion f:{1, 2, 3, 4	$\} \rightarrow \{1, 2, 3, 4\}$	} wh	ich are one	one, onto and satisfy the
			if $f(k)$ is odd th	en $f(k+1)$ is	even,	k = 1, 2, 3	
			h function is:				
	(a) 4		(b) 8		(c) 1	.2	(d) 16


77. If range of function f(x) whose domain is set of all real numbers is [-2, 4], then range of function $g(x) = \frac{1}{2} f(2x+1)$ is equal to:

86. Which of the following is closest to the graph of $y = \tan(\sin x)$, x > 0?

- **87.** Consider the function $f: R \{1\} \to R \{2\}$ given by $f(x) = \frac{2x}{x-1}$. Then
 - (a) f is one-one but not onto
- (b) f is onto but not one-one
- (c) f is neither one-one nor onto
- (d) f is both one-one and onto
- **88.** If range of function f(x) whose domain is set of all real numbers is [-2, 4], then range of function $g(x) = \frac{1}{2}f(2x+1)$ is equal to:

- (d) [-2, 2]
- (a) [-2,4] (b) [-1,2] (c) [-3,9] **89.** Let $f:R \to R$ and $f(x) = \frac{x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$, then f(x) is :
- (a) One-one, into
- (b) Many one, onto (c) One-one, onto
- (d) Many one, into

90. Let f(x) be defined as

$$f(x) = \begin{cases} |x| & 0 \le x < 1\\ |x-1|+|x-2| & 1 \le x < 2\\ |x-3| & 2 \le x < 3 \end{cases}$$

The range of function $g(x) = \sin(7(f(x)))$ is:

- (a) [0,1]
- (b) [-1,0]
- (c) $\left[-\frac{1}{2},\frac{1}{2}\right]$
- (d) [-1,1]
- **91.** The number of integral values of x in the domain of function f defined as $f(x) = \sqrt{\ln|\ln|x||} + \sqrt{7}|x| - |x|^2 - 10$ is:
 - (a) 5
- (b) 6
- (c) 7
- (d) 8

92. The complete set of values of x in the domain of function $f(x) = \sqrt{\log_{x+2(x)} ([x]^2 - 5[x] + 7)}$ (where [.] denote greatest integer function and {.} denote fraction part function) is :

(a)
$$\left(-\frac{1}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(2,\infty)$$

(b) $(0,1) \cup (1,\infty)$

(c)
$$\left(-\frac{2}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(1,\infty)$$

(d) $\left(-\frac{1}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(1,\infty)$

93. The number of integral ordered pair (x, y) that satisfy the system of equation |x + y - 4| = 5 and |x-3|+|y-1|=5 is/are:

(a) 2

- (c) 6
- **94.** Let $f: R \to R$, where $f(x) = \frac{x^2 + ax + 1}{x^2 + x + 1}$. Then the complete set of values of 'a' such that f(x) is onto is:

(a) $(-\infty, \infty)$

- (b) $(-\infty, 0)$
- (c) $(0,\infty)$
- (d) Empty set
- **95.** If $A = \{1, 2, 3, 4\}$ and $f: A \rightarrow A$, then total number of invertible function 'f' such that $f(2) \neq 2$, $f(4) \neq 4$, f(1) = 1 is equal to :

- (c) 3
- (d) 4
- **96.** The domain of definition of $f(x) = \log_{(x^2-x+1)} (2x^2 7x + 9)$ is :

(a) R

- (b) $R \{0\}$
- (c) $R \{0, 1\}$
- **97.** If $A = \{1, 2, 3, 4\}, B = \{1, 2, 3, 4, 5, 6\}$ and $f: A \to B$ is an injective mapping satisfying $f(i) \neq i$, then number of such mappings are:

(a) 182

- (b) 181
- (c) 183
- (d) none of these
- **98.** Let $f(x) = x^2 2x 3$; $x \ge 1$ and $g(x) = 1 + \sqrt{x + 4}$; $x \ge -4$ then the number of real solutions of equation f(x) = g(x) is/are

(a) 0

- (b) 1
- (c) 2
- (d) 4

15 **Function** Answers

-	-	alones.			1000				1131	VEI	9		12232	1-126	1000	- market			
1.	(b)	2.	(c)	3.	(c)	4.	(b)	5.	(d)	6.	(a)	7.	(d)	8.	(c)	9.	(c)	10.	(a)
11.	(b)	12.	(c)	13.	(c)	14.	(b)	15.	(a)	16.	(a)	17.	(d)	18.	(a)	19.	(d)	20.	(c)
21.	(d)	22.	(d)	23.	(b)	24.	(b)	25.	(c)	26.	(b)	27.	(c)	28.	(c)	29.	(b)	30.	(c)
31.	(d)	32.	(b)	33.	(a)	34.	(c)	35.	(b)	36.	(c)	37.	(a)	38.	(d)	39.	(a)	40.	(c)
41.	(b)	42.	(b)	43.	(a)	44.	(b)	45.	(c)	46.	(b)	47.	(b)	48.	(b)	49.	(c)	50.	(c)
51.	(b)	52.	(c)	53.	(c)	54.	(d)	55.	(a)	56.	(b)	57.	(d)	58.	(c)	59.	(a)	60.	(b)
61.	(b)	62.	(c)	63.	(c)	64.	(ъ)	65.	(d)	66.	(a)	67.	(d)	68.	(a)	69.	(a)	70.	(b)
71.	(c)	72.	(a)	73.	(a)	74.	(d)	75.	(c)	76.	(d)	77.	(b)	78.	(d)	79.	(d)	80.	(c)
81.	(b)	82.	(ъ)	83.	(a)	84.	(c)	85.	(c)	86.	(b)	87.	(d)	88.	(b)	89.	(d)	90.	(d)
91.	(b)	92.	(d)	93.	(d)	94.	(d)	95.	(c)	96.	(c)	97.	(b)	98.	(b)				

Exercise-2: One or More than One Answer is/are Correct

1. f(x) is an even periodic function with period 10. In [0, 5], $f(x) = \begin{cases} 2x & 0 \le x < 2 \\ 3x^2 - 8 & 2 \le x < 4. \text{ Then : } \\ 10x & 4 \le x \le 5 \end{cases}$

(a)
$$f(-4) = 40$$

(b)
$$\frac{f(-13) - f(11)}{f(13) + f(-11)} = \frac{17}{21}$$

(c) f(5) is not defined

(d) Range of f(x) is [0, 50]

2. Let $f(x) = ||x^2 - 4x + 3| - 2|$. Which of the following is/are correct?

(a) f(x) = m has exactly two real solutions of different sign $\forall m > 2$

(b) f(x) = m has exactly two real solutions $\forall m \in (2, \infty) \cup \{0\}$

(c) f(x) = m has no solutions $\forall m < 0$

(d) f(x) = m has four distinct real solution $\forall m \in (0, 1)$

3. Let
$$f(x) = \cos^{-1}\left(\frac{1-\tan^2(x/2)}{1+\tan^2(x/2)}\right)$$

Which of the following statement(s) is/are correct about f(x)?

(a) Domain is R

(b) Range is $[0, \pi]$

(c) f(x) is even

(d) f(x) is derivable in $(\pi, 2\pi)$

4. $|\log_e |x|| = |k-1| - 3$ has four distinct roots then k satisfies: (where $|x| < e^2, x \ne 0$)

(a)
$$(-4, -2)$$

(c)
$$(e^{-1}, e)$$

(d)
$$(e^{-2}, e^{-1})$$

5. Which of the following functions are defined for all $x \in R$?

(Where $[\cdot]$ = denotes greatest integer function)

(a) $f(x) = \sin[x] + \cos[x]$

(b)
$$f(x) = \sec^{-1}(1 + \sin^2 x)$$

(c)
$$f(x) = \sqrt{\frac{9}{8} + \cos x + \cos 2x}$$

(d)
$$f(x) = \tan(\ln(1+|x|))$$

6. Let $f(x) = \begin{cases} x^2 & 0 < x < 2 \\ 2x - 3 & 2 \le x < 3, \text{ then the true equations} : \\ x + 2 & x \ge 3 \end{cases}$

(a)
$$f\left(f\left(\frac{3}{2}\right)\right) = f\left(\frac{3}{2}\right)$$

(b)
$$1 + f\left(f\left(\frac{5}{2}\right)\right) = f\left(\frac{5}{2}\right)$$

(c)
$$f(f(f(2))) = f(1)$$

(d)
$$\underbrace{f(f(f(.....f(4))...)}_{1004 \text{ times}} = 2012$$

7. Let $f: \left[\frac{2\pi}{3}, \frac{5\pi}{3}\right] \longrightarrow [0, 4]$ be a function defined as $f(x) = \sqrt{3} \sin x - \cos x + 2$, then:

(a)
$$f^{-1}(1) = \frac{4\pi}{3}$$
 (b) $f^{-1}(1) = \pi$ (c) $f^{-1}(2) = \frac{5\pi}{6}$ (d) $f^{-1}(2) = \frac{7\pi}{6}$

(c)
$$f^{-1}(2) = \frac{5\pi}{6}$$

- **8.** Let f(x) be invertible function and let $f^{-1}(x)$ be its inverse. Let equation $f(f^{-1}(x)) = f^{-1}(x)$ has two real roots α and β (with in domain of f(x)), then:
 - (a) f(x) = x also have same two real roots
 - (b) $f^{-1}(x) = x$ also have same two real roots
 - (c) $f(x) = f^{-1}(x)$ also have same two real roots
 - (d) Area of triangle formed by (0, 0), $(\alpha, f(\alpha))$, and $(\beta, f(\beta))$ is 1 unit
- **9.** The function $f(x) = \cos^{-1} x + \cos^{-1} \left(\frac{x}{2} + \frac{\sqrt{3 3x^2}}{2} \right)$, then :
 - (a) Range of f(x) is $\left[\frac{\pi}{3}, \frac{10\pi}{3}\right]$
- (b) Range of f(x) is $\left[\frac{\pi}{3}, \frac{5\pi}{3}\right]$
- (c) f(x) is one-one for $x \in \left[-1, \frac{1}{2}\right]$ (d) f(x) is one-one for $x \in \left[\frac{1}{2}, 1\right]$
- **10.** Let $f:R \to R$ defined by $f(x) = \cos^{-1}(-\{-x\})$, where $\{x\}$ is fractional part function. Then which of the following is/are correct?
 - (a) f is many-one but not even function
- (b) Range of f contains two prime numbers

(c) f is a periodic

- (d) Graph of f does not lie below x-axis
- 11. Which option(s) is/are true?
 - (a) $f: R \to R$, $f(x) = e^{|x|} e^{-x}$ is many-one into function
 - (b) $f: R \to R$, $f(x) = 2x + |\sin x|$ is one-one onto
 - (c) $f: R \to R$, $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$ is many-one onto
 - (d) $f:R \to R$, $f(x) = \frac{2x^2 x + 5}{7x^2 + 2x + 10}$ is many-one into
- **12.** If $h(x) = \left[\ln \frac{x}{e}\right] + \left[\ln \frac{e}{x}\right]$, where [·] denotes greatest integer function, then which of the

following are true?

- (a) range of h(x) is $\{-1, 0\}$
- (b) If h(x) = 0, then x must be irrational
- (c) If h(x) = -1, then x can be rational as well as irrational
- (d) h(x) is periodic function
- **13.** If $f(x) = \begin{cases} x^3 & ; & x \in Q \\ -x^3 & ; & x \notin Q \end{cases}$, then:
 - (a) f(x) is periodic

(b) f(x) is many-one

(c) f(x) is one-one

(d) range of the function is R

14. Let f(x) be a real valued continuous function such that

$$f(0) = \frac{1}{2}$$
 and $f(x+y) = f(x)f(a-y) + f(y)f(a-x) \ \forall \ x, y \in R$,

then for some real a:

- (a) f(x) is a periodic function
- (b) f(x) is a constant function

(c) $f(x) = \frac{1}{2}$

(d) $f(x) = \frac{\cos x}{2}$

15. f(x) is an even periodic function with period 10. In [0, 5], $f(x) = \begin{cases} 2x & 0 \le x < 2 \\ 3x^2 - 8 & 2 \le x < 4 \end{cases}$. Then:

(a) f(-4) = 40

(b) $\frac{f(-13) - f(11)}{f(13) + f(-11)} = \frac{17}{21}$

(c) f(5) is not defined

(d) Range of f(x) is [0, 50]

16. For the equation $\frac{e^{-x}}{1+x} = \lambda$ which of the following statement(s) is/are correct?

- (a) when $\lambda \in (0, \infty)$ equation has 2 real and distinct roots
- (b) when $\lambda \in (-\infty, -e^2)$ equation has 2 real and distinct roots
- (c) when $\lambda \in (0, \infty)$ equation has 1 real root
- (d) when $\lambda \in (-e, 0)$ equation has no real root

17. For $x \in \mathbb{R}^+$, if $x, [x], \{x\}$ are in harmonic progression then the value of x can not be equal to: (where $[\cdot]$ denotes greatest integer function, $\{\cdot\}$ denotes fractional part function)

- (a) $\frac{1}{\sqrt{2}} \tan \frac{\pi}{8}$ (b) $\frac{1}{\sqrt{2}} \cot \frac{\pi}{8}$ (c) $\frac{1}{\sqrt{2}} \tan \frac{\pi}{12}$ (d) $\frac{1}{\sqrt{2}} \cot \frac{\pi}{12}$

18. The equation ||x-1|+a|=4, $a \in R$, has :

- (a) 3 distinct real roots for unique value of a. (b) 4 distinct real roots for $a \in (-\infty, -4)$
- (c) 2 distinct real roots for |a| < 4
- (d) no real roots for a > 4

19. Let $f_n(x) = (\sin x)^{1/n} + (\cos x)^{1/n}, x \in R$, then :

(a)
$$f_2(x) > 1$$
 for all $x \in \left(2k\pi, (4k+1)\frac{\pi}{2}\right), k \in I$

(b) $f_2(x) = 1 \text{ for } x = 2k\pi, k \in I$

(c)
$$f_2(x) > f_3(x)$$
 for all $x \in \left(2k\pi, (4k+1)\frac{\pi}{2}\right), k \in I$

(d)
$$f_3(x) \ge f_5(x)$$
 for all $x \in \left(2k\pi, (4k+1)\frac{\pi}{2}\right), k \in I$

(Where I denotes set of integers)

- **20.** If the domain of $f(x) = \frac{1}{\pi} \cos^{-1} \left| \log_3 \left(\frac{x^2}{3} \right) \right|$ where, x > 0 is [a, b] and the range of f(x) is [c, d],
 - then: (a) a, b are the roots of the equation $x^4 - 3x^3 - x + 3 = 0$
 - (b) a, b are the roots of the equation $x^4 x^3 + x^2 2x + 1 = 0$
 - (c) $a^3 + d^3 = 1$
 - (d) $a^2 + b^2 + c^2 + d^2 = 11$
- **21.** The number of real values of x satisfying the equation; $\left\lceil \frac{2x+1}{3} \right\rceil + \left\lceil \frac{4x+5}{6} \right\rceil = \frac{3x-1}{2}$ are greater than or equal to {[] denotes greatest integer function):

- **22.** Let $f(x) = \sin^6\left(\frac{x}{4}\right) + \cos^6\left(\frac{x}{4}\right)$. If $f^n(x)$ denotes n^{th} derivative of f evaluated at x. Then which of the following hold?

- (a) $f^{2014}(0) = -\frac{3}{8}$ (b) $f^{2015}(0) = \frac{3}{8}$ (c) $f^{2010}\left(\frac{\pi}{2}\right) = 0$ (d) $f^{2011}\left(\frac{\pi}{2}\right) = \frac{3}{8}$
- 23. Which of the following is(are) incorrect?
 - (a) If $f(x) = \sin x$ and $g(x) = \ln x$ then range of g(f(x)) is [-1, 1]
 - (b) If $x^2 + ax + 9 > x \forall x \in R$ then -5 < a < 7
 - (c) If $f(x) = (2011 x^{2012})^{\frac{1}{2012}}$ then $f(f(2)) = \frac{1}{2}$
 - (d) The function $f: R \to R$ defined as $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$ is not surjective.
- **24.** If [x] denotes the integral part of x for real x, and

$$S = \left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right] + \left[\frac{1}{4} + \frac{3}{200}\right] + \dots + \left[\frac{1}{4} + \frac{199}{200}\right]$$
 then

- (a) S is a composite number
- (b) Exponent of S in $\lfloor 100 \rfloor$ is 12 (d) $^{2S}C_r$ is max when r = 51
- (c) Number of factors of S is 10

Answers

1.	(a, b, d)	2.	(a, b, c)	3.	(c, d)	4.	(a, b)	5.	(a, b, c)	6,	(a, b, c, d)
7.	(a, d)	8.	(a, b, c)	9.	(b, c)	10.	(a, b, d)	11.	(a, b, d)	12.	(a, c)
13.	(c, d)	14.	(a, b, c)	15.	(a, b, d)	16.	(b, c, d)	17.	(a, c, d)	18.	(a, b, c, d)
19.	(a, b)	20.	(a, d)	21.	(a, b, c)	22.	(a, c, d)	23.	a, b)	24.	(a, b)

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $f(x) = \log_{\{x\}}[x]$

 $g(x) = \log_{\{x\}} \{x\}$

 $h(x)\log_{[x]}\{x\}$

where [], { } denotes the greatest integer function and fractional part fucntion respectively.

- **1.** For $x \in (1, 5)$ the f(x) is not defined at how many points :
 - (a) 5
- (b) 4
- (c) 3
- (d) 2
- **2.** If $A = \{x : x \in \text{domain of } f(x)\}$ and $B = \{x : x \in \text{domain of } g(x)\}$ then $\forall x \in \{1, 5\}$, A B will be:
 - (a) (2, 3)
- (b) (1, 3)
- (c) (1, 2)
- (d) None of these

- **3.** Domain of h(x) is:
 - (a) [2, ∞)
- (b) [1, ∞)
- (c) $[2, \infty) \{I\}$
- (d) $R^+ \{I\}$

I denotes integers.

Paragraph for Question Nos. 4 to 6

 θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain

of f + g and g equal. The values of θ for which $h(\theta)$ is defined are handsome. Let

$$f(x) = \sqrt{\theta x^2 - 2(\theta^2 - 3)x - 12\theta}, g(x) = \ln(x^2 - 49),$$

$$h(\theta) = \ln \left[\int_{0}^{\theta} 4\cos^{2}t \, dt - \theta^{2} \right]$$
, where θ is in radians.

- **4.** Complete set of values of θ which are well behaved as well as intelligent is:
 - (a) $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
- (b) $\left[\frac{3}{5}, \frac{7}{8}\right]$
- (c) $\left[\frac{5}{6}, \frac{\pi}{2}\right]$
- (d) $\left[\frac{6}{7}, \frac{\pi}{2}\right]$
- **5.** Complete set of values of θ which are intelligent is :
 - (a) $\left[\frac{6}{7}, \frac{7}{2}\right]$
- (b) $\left(0,\frac{\pi}{3}\right]$
- (c) $\left[\frac{1}{4}, \frac{6}{7}\right]$
- (d) $\left[\frac{1}{2}, \frac{\pi}{2}\right]$
- **6.** Complete set of values of θ which are well behaved, intelligent and handsome is :
 - (a) $\left[0,\frac{\pi}{2}\right]$
- (b) $\left[\frac{6}{7}, \frac{\pi}{2}\right]$
- (c) $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
- (d) $\left[\frac{3}{5}, \frac{\pi}{2}\right]$

Paragraph for Question Nos. 7 to 8

Let f(x) = 2 - |x - 3|, $1 \le x \le 5$ and for rest of the values f(x) can be obtained by using the relation $f(5x) = \alpha f(x) \forall x \in R$.

7.	The maximum	value	of f	(x)	in [5°	$^{1},5^{3}$] for	α	=	2 is	:
----	-------------	-------	------	-----	--------	--------------	-------	---	---	------	---

- (a) 16
- (b) 32
- (c) 64
- (d) 8

8. The value of
$$f(2007)$$
, taking $\alpha = 5$, is:

- (a) 1118
- (b) 2007
- (c) 1250
- (d) 132

Paragraph for Question Nos. 9 to 10

An even periodic function $f:R \to R$ with period 4 is such that

$$f(x) = \begin{bmatrix} \max(|x|, x^2) & ; & 0 \le x < 1 \\ x & ; & 1 \le x \le 2 \end{bmatrix}$$

- **9.** The value of $\{f(5.12)\}\$ (where $\{\cdot\}$ denotes fractional part function), is :
 - (a) $\{f(3.26)\}$
- (b) $\{f(7.88)\}$
- (c) $\{f(2.12)\}$
- (d) $\{f(5.88)\}$
- **10.** The number of solutions of $f(x) = |3\sin x|$ for $x \in (-6, 6)$ are :
 - (a) 5
- (b) 3
- (c) 7
- (d) 9

Paragraph for Question Nos. 11 to 12

$$Let f(x) = \frac{2|x|-1}{x-3}$$

- 11. Range of f(x):
 - (a) $R \{3\}$
- (b) $\left(-\infty, \frac{1}{3}\right] \cup (2, \infty)$ (c) $\left(-2, \frac{1}{3}\right] \cup (2, \infty)$ (d) R
- **12.** Range of the values of 'k' for which f(x) = k has exactly two distinct solutions :

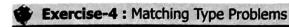
(a)
$$\left(-2, \frac{1}{3}\right)$$

- (b) (-2, 1]
- (c) $\left[0, \frac{2}{3}\right]$

Paragraph for Question Nos. 13 to 14

Let f(x) be a continuous function (define for all x) which $f^3(x) - 5f^2(x) + 10f(x) - 12 \ge 0$, $f^2(x) - 4f(x) + 3 \ge 0$ and $f^2(x) - 5f(x) + 6 \le 0$

- **13.** If distinct positive number b_1 , b_2 and b_3 are in G.P. then $f(1) + \ln b_1$, $f(2) + \ln b_2$, $f(3) + \ln b_3$ are in:
 - (a) A.P.
- (b) G.P.
- (c) H.P.
- (d) A.G.P.
- **14.** The equation of tangent that can be drawn from (2, 0) on the curve $y = x^2 f(\sin x)$ is :
- (a) y = 24(x+2) (b) y = 12(x+2) (c) y = 24(x-2) (d) y = 12(x-2)


Paragraph for Question Nos. 15 to 16

Let $f:[2,\infty)\to[1,\infty)$ defined by $f(x)=2^{x^4-4x^2}$ and $g:\left[\frac{\pi}{2},\pi\right]\to A$ defined by $g(x) = \frac{\sin x + 4}{\sin x - 2}$ be two invertible functions, then

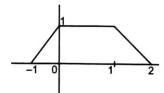
- **15.** $f^{-1}(x)$ is equal to
 - (a) $\sqrt{2 + \sqrt{4 \log_2 x}}$ (b) $\sqrt{2 + \sqrt{4 + \log_2 x}}$ (c) $\sqrt{4 + \sqrt{2 + \log_2 x}}$ (d) $\sqrt{4 \sqrt{2 + \log_2 x}}$
- 16. The set 'A' equals to
 - (a) [5, 2]

- (b) [-2, 5] (c) [-5, 2] (d) [-5, -2]

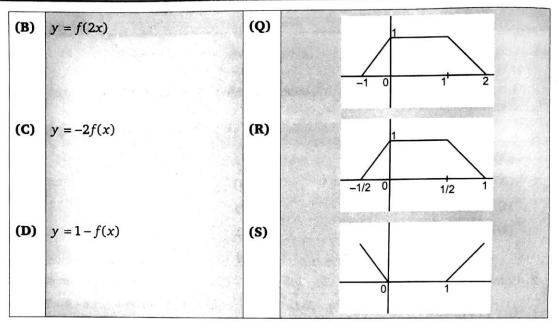
1	1							A	nsv	ver	S								1
1.	(c)	2.	(d)	3.	(c)	4.	(d)	5.	(a)	6.	(b)	7.	(b)	8.	(a)	9.	(b)	10.	(c)
11.	(b)	12.	(a)	13.	(a)	14.	(c)	15	(h)	16.	(4)								

1. If $x, y, z \in R$ satisfies the system of equations $x + [y] + \{z\} = 12.7$, $[x] + \{y\} + z = 4.1$ and $\{x\} + y + [z] = 2$

(where $\{\cdot\}$ and $[\cdot]$ denotes the fractional and integral parts respectively), then match the following:


	Column-l		Column-II	
(A)	$\{x\} + \{y\} =$	(P)	7.7	
(B)	[z] + [x] =	(Q)	1.1	
(C)	$x + \{z\} =$	(R)	1	
(D)	$z + [y] - \{x\} =$	(S)	3	
		(T)	4	

2. Consider $ax^4 + (7a - 2b)x^3 + (12a - 14b - c)x^2 - (24b + 7c)x + 1 - 12c = 0$, has no real roots and $f_1(x) = \frac{\sqrt{\log_{(\pi+e)}(ax^4 + (7a - 2b)x^3 + (12a - 14b - c)x^2 - (24b + 7c)x + 1 - 12c)}}{\sqrt{a}\sqrt{-\operatorname{sgn}(1 + ac + b^2)}}$


 $f_2(x) = -2 + 2\log_{\sqrt{2}}\cos\left(\tan^{-1}\left(\sin\left(\pi(\cos(\pi(x+\frac{7}{2}))\right)\right)\right).$ Then match the following :

	Column-l		Column-II
(A)	Domain of $f_1(x)$ is	(P)	[-3, -2]
(B)	Range of $f_2(x)$ in the domain of $f_1(x)$ is	(Q)	[-4, -2]
(C)	Range of $f_2(x)$ is	(R)	$(-\infty,\infty)$
(D)	Domain of $f_2(x)$ is	(S)	$(-\infty, -4] \cup [-3, \infty)$
	Service Control of the Control of th	(T)	[0, 1]

3. Given the graph of y = f(x)

	Column-l	Column-II		
(A)	y = f(1-x)	(P)		
	Land Control of the C		-1 1 2	
	The Road Course of the Land		-2	

4.

-	Column-l		Column-II
(A)	$f(x) = \sin^2 2x - 2\sin^2 x$	(P)	Range contains no natural number
(B)	$f(x) = \frac{4}{\pi} (\sin^{-1} (\sin \pi x))$	(Q)	Range contains atleast one integer
(C)	$f(x) = \sqrt{\ln(\cos(\sin x))}$	(R)	Many one but not even function
(D)	$f(x) = \tan^{-1}\left(\frac{x^2 + 1}{x^2 + \sqrt{3}}\right)$	(S)	Both many one and even function
		(T)	Periodic but not odd function

5.

	Column-l		Column-ii
(A)	If $ x^2 - x \ge x^2 + x$, then complete set of values of x is	(P)	(0,∞)
(B)	If $ x+y > x-y$, where $x > 0$, then complete set of values of y is	(Q)	(-∞, 0]
(C)	If $\log_2 x \ge \log_2(x^2)$, then complete set of values of x is	(R)	[−1,∞)

(D)	$[x] + 2 \ge x $, (where [] denotes the greatest		(0,1)
1	integer function) then complete set of values of x is		
		(T)	[1,∞)

6.

	Column-i	V	Column-II
(A)	Domain of $f(x) = \ln \tan^{-1} \{(x^3 - 6x^2 + 11x - 6)x(e^x - 1)\}$ is	(P)	$\left[-1,\frac{5}{4}\right]$
(B)	Range of $f(x) = \sin^2 \frac{x}{4} + \cos \frac{x}{4}$ is	(Q)	$[2,\infty)$
(C)	The domain of function $f(x) = \sqrt{\log_{(x -1)}(x^2 + 4x + 4)}$ is	(R)	$(1,2)\cup(3,\infty)$
(D)	Let $f(x) = \begin{cases} x^2 & x < 1 \\ x + 1 & x \ge 1 \end{cases}$; $g(x) = \begin{cases} x + 2 & x < 1 \\ x^2 & x \ge 1 \end{cases}$	(S)	[0,∞)
	Then range of function $f(g(x))$ is	(T)	$(-\infty,-3)\cup(-2,-1)\cup(2,\infty)$

7. Let $f(x) \begin{bmatrix} 1+x; & 0 \le x \le 2 \\ 3-x; & 2 < x \le 3 \end{bmatrix}$;

g(x) = f(f(x)):

-	Column-I	1	Column-II
(A)	If domain of $g(x)$ is $[a, b]$ then $b-a$ is	(P)	1
(B)	If range of $g(x)$ is $[c, d]$ then $c + d$ is	(Q)	2
(C)	f(f(f(2))) + f(f(f(3))), is	(R)	3
(D)	m = maximum value of g(x) then 2m - 2 is :	(S)	4

Answers

- 1. $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow Q$
- 2. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$
- 3. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$
- 4. $A \rightarrow P$, Q, S, T; $B \rightarrow Q$, R; $C \rightarrow P$, Q, S; $D \rightarrow P$, S
- **5.** $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow R$
- 6. $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow S$
- 7. $A \rightarrow R$; $B \rightarrow R$; $C \rightarrow R$; $D \rightarrow S$

Exercise-5: Subjective Type Problems

- 1. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Suppose further, that f(1) = 1, f(2) = 3, f(3) = 5, f(4) = 7, f(5) = 9, f'(2) = 2, then the sum of all the digits of f(6) is
- **2.** Let $f(x) = x^3 3x + 1$. Find the number of different real solution of the equation f(f(x)) = 0.
- 3. If $f(x+y+1) = (\sqrt{f(x)} + \sqrt{f(y)})^2 \ \forall \ x, y \in R \text{ and } f(0) = 1, \text{ then } f(2) = \dots$
- **4.** If the domain of $f(x) = \sqrt{12 3^x 3^{3-x}} + \sin^{-1}\left(\frac{2x}{3}\right)$ is [a, b], then $a = \dots$
- ${f 5.}$ The number of elements in the range of the function :

$$y = \sin^{-1}\left[x^2 + \frac{5}{9}\right] + \cos^{-1}\left[x^2 - \frac{4}{9}\right]$$
 where [·] denotes the greatest integer function is

- **6.** The number of solutions of the equation $f(x-1)+f(x+1)=\sin\alpha$, $0<\alpha<\frac{\pi}{2}$, where $f(x)=\begin{cases} 1-|x| & , & |x|\leq 1\\ 0 & , & |x|>1 \end{cases}$ is
- 7. The number of integers in the range of function $f(x) = [\sin x] + [\cos x] + [\sin x + \cos x]$ is (where $[\cdot]$ = denotes greatest integer function)
- **8.** If P(x) is a polynomial of degree 4 such that P(-1) = P(1) = 5 and P(-2) = P(0) = P(2) = 2, then find the maximum value of P(x).
- **9.** The number of integral value(s) of k for which the curve $y = \sqrt{-x^2 2x}$ and x + y k = 0 intersect at 2 distinct points is/are
- 10. Let the solution set of the equation:

$$\sqrt{\left[x + \left[\frac{x}{2}\right]\right]} + \left[\sqrt{\left\{x\right\}} + \left[\frac{x}{3}\right]\right] = 3$$

is [a, b). Find the product ab.

(where [·] and {·} denote greatest integer and fractional part function respectively).

11. For all real number x, let $f(x) = \frac{1}{\frac{2011}{1-x^{2011}}}$. Find the number of real roots of the equation

$$f(f(\ldots,(f(x))\ldots) = \{-x\}$$

where f is applied 2013 times and $\{\cdot\}$ denotes fractional part function.

- 12. Find the number of elements contained in the range of the function $f(x) = \left[\frac{x}{6}\right] \left[\frac{-6}{x}\right] \forall x \in (0, 30]$ (where [-] denotes greatest integer function)
- **13.** Let $f(x, y) = x^2 y^2$ and g(x, y) = 2xy.

such that
$$(f(x,y))^2 - (g(x,y))^2 = \frac{1}{2}$$
 and $f(x,y) \cdot g(x,y) = \frac{\sqrt{3}}{4}$

Find the number of ordered pairs (x, y)?

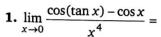
- **14.** Let $f(x) = \frac{x+5}{\sqrt{x^2+1}} \ \forall \ x \in R$, then the smallest integral value of k for which $f(x) \le k \ \forall \ x \in R$ is
- **15.** In the above problem, f(x) is injective in the interval $x \in (-\infty, a]$, and λ is the largest possible value of a, then $[\lambda] =$ (where [x] denote greatest integer $\leq x$)
- **16.** The number of integral values of m for which $f: R \to R$; $f(x) = \frac{x^3}{3} + (m-1)x^2 + (m+5)x + n$ is bijective is :
- 17. The number of roots of equation:

$$\left(\frac{(x-1)(x-3)}{(x-2)(x-4)} - e^x\right) \left(\frac{(x+1)(x+3)e^x}{(x+2)(x+4)} - 1\right) (x^3 - \cos x) = 0$$

- **18.** The number of solutions of the equation $\cos^{-1}\left(\frac{1-x^2-2x}{(x+1)^2}\right) = \pi(1-\{x\})$, for $x \in [0,76]$ is equal to. (where $\{\cdot\}$ denote fraction part function)
- **19.** Let $f(x) = x^2 bx + c$, b is an odd positive integer. Given that f(x) = 0 has two prime numbers as roots and b + c = 35. If the least value of $f(x) \forall x \in R$ is λ , then $\left[\left| \frac{\lambda}{3} \right| \right]$ is equal to (where [-] denotes greatest integer function)
- **20.** Let f(x) be continuous function such that f(0) = 1 and $f(x) f\left(\frac{x}{7}\right) = \frac{x}{7} \forall x \in R$, then $f(42) = \frac{x}{7} = \frac{x}{$
- **21.** If $f(x) = 4x^3 x^2 2x + 1$ and $g(x) = \begin{cases} \min\{f(t): 0 \le t \le x\} &; 0 \le x \le 1 \\ 3 x &; 1 < x \le 2 \end{cases}$ and if $\lambda = g\left(\frac{1}{4}\right) + g\left(\frac{3}{4}\right) + g\left(\frac{5}{4}\right)$, then $2\lambda = \frac{1}{4} + \frac{1}{4} +$
- **22.** If $x = 10 \sum_{r=3}^{100} \frac{1}{(r^2 4)}$, then [x] =

(where [.] denotes greatest integer function)

- **23.** Let $f(x) = \frac{ax + b}{cx + d}$, where a, b, c, d are non zero. If f(7) = 7, f(11) = 11 and f(f(x)) = x for all x except $-\frac{d}{c}$. The unique number which is not in the range of f is
- **24.** Let $A = \{x \mid x^2 4x + 3 < 0, x \in R\}$ $B = \{x \mid 2^{1-x} + p \le 0; x^2 - 2(p+7)x + 5 \le 0\}$


If $A \subseteq B$, then the range of real number $p \in [a, b]$ where a, b are integers. Find the value of (b - a).

- **25.** Let the maximum value of expression $y = \frac{x^4 x^2}{x^6 + 2x^3 1}$ for x > 1 is $\frac{p}{q}$, where p and q are relatively prime natural numbers, then p + q =
- **26.** If f(x) is an even function, then the number of distinct real numbers x such that $f(x) = f\left(\frac{x+1}{x+2}\right)$ is:
- **27.** The least integral value of $m, m \in R$ for which the range of function $f(x) = \frac{x+m}{x^2+1}$ contains the interval [0,1] is :
- **28.** Let x_1, x_2, x_3 satisfying the equation $x^3 x^2 + \beta x + \gamma = 0$ are in G.P. where x_1, x_2, x_3 are positive numbers. Then the maximum value of $[\beta] + [\gamma] + 4$ is where $[\cdot]$ denotes greatest integer function is :
- **29.** Let $A = \{1, 2, 3, 4\}$ and $B = \{0, 1, 2, 3, 4, 5\}$. If 'm' is the number of strictly increasing function f, $f: A \to B$ and n is the number of onto functions $g, g: B \to A$. Then the last digit of n m is.
- **30.** If $\sum_{r=1}^{n} [\log_2 r] = 2010$, where [] denotes greatest integer function, then the sum of the digits of n is:
- **31.** Let $f(x) = \frac{ax+b}{cx+d}$, where a, b, c, d are non-zero. If f(7) = 7, f(11) = 11 and f(f(x)) = x for all x except $-\frac{d}{c}$. The unique number which is not in the range of f is
- **32.** It is pouring down rain, and the amount of rain hitting point (x, y) is given by $f(x, y) = |x^3 + 2x^2y 5xy^2 6y^3|$. If Mr. 'A' starts at (0, 0); find number of possible value(s) for 'm' such that y = mx is a line along which Mr. 'A' could walk without any rain falling on him.
- **33.** Let P(x) be a cubic polynomical with leading co-efficient unity. Let the remainder when P(x) is divided by $x^2 5x + 6$ equals 2 times the remainder when P(x) is divided by $x^2 5x + 4$. If P(0) = 100, find the sum of the digits of P(5):
- **34.** Let $f(x) = x^2 + 10x + 20$. Find the number of real solution of the equation f(f(f(f(x)))) = 0
- **35.** If range of $f(x) = \frac{(\ln x)(\ln x^2) + \ln x^3 + 3}{\ln^2 x + \ln x^2 + 2}$ can be expressed as $\left[\frac{a}{b}, \frac{c}{d}\right]$ where a, b, c and d are prime numbers (not necessarily distinct) then find the value of $\frac{(a+b+c+d)}{2}$.
- **36.** Polynomial P(x) contains only terms of odd degree. When P(x) is divided by (x-3), then remainder is 6. If P(x) is divided by (x^2-9) then remainder is g(x). Find the value of g(2).
- **37.** The equation $2x^3 3x^2 + p = 0$ has three real roots. Then find the minimum value of p.
- **38.** Find the number of integers in the domain of $f(x) = \frac{1}{\sqrt{\ln \cos^{-1} x}}$.

	1					Ansv	vers	•					
1.	26	2.	7	3.	9	4.	1	5.	1	6.	4	7.	5
8.	6	9.	1	10.	12	11.	1	12.	6	13.	4	14.	6
15.	0	16.	6	17.	7	18.	76	19.	6	20.	8	21.	5
22.	5	23.	9	24.	3	25.	7	26.	4	27.	1	28.	3
29.	5	30.	8	31.	9	32.	3	33.	2	34.	2	35.	6
36.	4	37.	0	38.	2							Acres 18	

Chapter 2 - Limit

Exercise-1: Single Choice Problems

(a)
$$\frac{1}{6}$$

(b)
$$-\frac{1}{3}$$
 (c) $-\frac{1}{6}$

(c)
$$-\frac{1}{6}$$

(d)
$$\frac{1}{3}$$

2. The value of $\lim_{x\to 0} \frac{(\sin x - \tan x)^2 - (1 - \cos 2x)^4 + x^5}{7(\tan^{-1} x)^7 + (\sin^{-1} x)^6 + 3\sin^5 x}$ equal to :

(d)
$$\frac{1}{3}$$

3. Let $a = \lim_{x \to 0} \frac{\ln(\cos 2x)}{3x^2}$, $b = \lim_{x \to 0} \frac{\sin^2 2x}{x(1-e^x)}$, $c = \lim_{x \to 1} \frac{\sqrt{x}-x}{\ln x}$.

Then a, b, c satisfy:

(a)
$$a < b < a$$

(b)
$$b < c < a$$

(c)
$$a < c < b$$

(d)
$$b < a < c$$

(a) a < b < c (b) b < c < a (c) a < c < b (d) b < a < c **4.** If $f(x) = \cot^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$ and $g(x) = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)$, then $\lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$, $0 < a < \frac{1}{2}$ is:

(a) $\frac{3}{2(1 + a^2)}$ (b) $\frac{3}{2}$ (c) $\frac{-3}{2(1 + a^2)}$ (d) $-\frac{3}{2}$

(a)
$$\frac{3}{2(1+a^2)}$$

(b)
$$\frac{3}{2}$$

(c)
$$\frac{-3}{2(1+a^2)}$$

(d)
$$-\frac{3}{2}$$

5. $\lim_{x \to 0} \left(\frac{(1+x)^{\frac{2}{x}}}{e^2} \right)^{\frac{4}{\sin x}}$ is:

(a)
$$e^{4}$$

(b)
$$e^{-4}$$

6. $\lim_{x \to \infty} \frac{3}{x} \left[\frac{x}{4} \right] = \frac{p}{q}$ (where [·] denotes greatest integer function), then p + q (where p, q are relative prime) is:

7.
$$f(x) = \lim_{n \to \infty} \frac{x^n + \left(\frac{\pi}{3}\right)^n}{x^{n-1} + \left(\frac{\pi}{3}\right)^{n-1}}$$
, (*n* is an even integer), then which of the following is incorrect?

- (a) If $f: \left[\frac{\pi}{3}, \infty\right] \to \left[\frac{\pi}{3}, \infty\right]$, then function is invertible
- (b) f(x) = f(-x) has infinite number of solutions
- (c) f(x) = |f(x)| has infinite number of solutions
- (d) f(x) is one-one function for all $x \in R$

8.
$$\lim_{x\to 0} \frac{\sin(\pi\cos^2(\tan(\sin x)))}{x^2} =$$

- (c) $\frac{\pi}{2}$
- (d) none of these

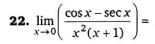
9. If
$$f(x) = \begin{cases} \frac{(e^{(x+3)\ln 27})^{\frac{x}{27}} - 9}{3^x - 27} & \text{; } x < 3\\ \lambda \frac{1 - \cos(x - 3)}{(x - 3)\tan(x - 3)} & \text{; } x > 3 \end{cases}$$

If $\lim_{x \to 3} f(x)$ exist, then $\lambda =$ (a) $\frac{9}{2}$ (b) $\frac{2}{9}$

- (c) $\frac{2}{3}$
- (d) none of these

10.
$$\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(\frac{\pi}{3} - x\right)}{2\cos x - 1}$$
 is equal to :

- (a) $\frac{2}{\sqrt{3}}$ (b) $\frac{1}{\sqrt{3}}$
- (d) $\frac{1}{2}$


11.
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{\cos^{-1} \left[\frac{1}{4} (3 \sin x - \sin 3x) \right]}$$
, (where [·] denotes greatest integer function) is:

- (c) $\frac{4}{\pi}$
- (d) does not exist

12. Let f be a continuous function on R such that
$$f\left(\frac{1}{4^n}\right) = (\sin e^n) e^{-n^2} + \frac{n^2}{n^2 + 1}$$
, then $f(0) = 1$

- (a) 1
- (b) 0
- (c) -1

13. $\lim_{x\to 1^-} \frac{e^{\{x\}}-\{x\}}{\{x\}}$	$\frac{x}{2} - 1$ equals, where $\{\cdot\}$ is	fractional part function	and I is an integer, to :
2	(b) $e-2$	(c) I	(d) does not exist
14. $\lim_{x \to \infty} (e^{11x} - 7)$	$(x)^{\frac{1}{3x}}$ is equal to:		
(a) $\frac{11}{3}$	11	(c) $e^{\frac{3}{11}}$	(d) $e^{\frac{11}{3}}$
15. The value of $\frac{1}{2}$	$\lim_{n\to 0} \left[(1-2x)^n \sum_{r=0}^n {}^n C_r \left(\frac{x+1}{1-r} \right)^r \right]$	$\left[\frac{x^2}{2x}\right]^r$ is:	
(a) e^n		(c) e^{3n}	(d) e^{-3n}
16. For a certain	value of 'c', $\lim_{x\to\infty} [(x^5+7)]$	$(x^4 + 2)^c - x$] is finite and	d non-zero. Then the value of
limit is :			
(a) $\frac{7}{5}$	(b) 1	(c) $\frac{2}{5}$	(d) None of these
17. The number o	f non-negative integral va	alues of <i>n</i> for which $\lim_{x\to 0} \frac{0}{x}$	$\frac{(\cos x - 1)(\cos x - e^x)}{x^n} = 0 \text{ is } :$
(a) 1	(b) 2	(c) 3	(d) 4
18. The value of li	. 63		
(a) $e^{-1/3}$	(b) $e^{1/3}$	(c) $e^{-1/6}$	(d) $e^{1/6}$
$19. \text{ If } \lim_{x \to \infty} (\sqrt{x^2} - x^2)$	(b) $e^{1/3}$ (x+1-ax-b) = 0, then for	or $k \ge 2$, $(k \in N) \lim_{n \to \infty} \sec^2$	$^{n}(k!\pi b) =$
(a) a	(b) −a	(c) 2a	(d) b
20. If f is a positive	e function such that $f(x + x)$	$+T)=f(x)(T>0), \forall x \in$	R, then
$\lim_{n\to\infty} n \left(\frac{f(x+1)}{f(x+1)} \right)$	$f(x) + 2f(x + 2T) + \dots + n$ $f(x) + 4f(x + 4T) + \dots + n$	$\left \frac{nf(x+nT)}{2}f(x+n^2T)\right =$	
(a) 2	(b) $\frac{2}{3}$	(c) $\frac{3}{2}$	(d) None of these
21. Let $f(x) = 3x^{10}$	$-7x^8 + 5x^6 - 21x^3 + 3x^6$	$x^2 - 7$	
$265 \left(\lim_{h \to 0} \frac{1}{(f(1-h)^2)} \right)$	$\left(\frac{h^4 + 3h^2}{h) - f(1)\sin 5h}\right) =$		
(a) 1	(b) 2	(c) 3	(d) -3

- (a) C
- (b) $-\frac{1}{2}$
- (c) -1
- (d) -2

23. Let f(x) be a continuous and differentiable function satisfying $f(x+y) = f(x)f(y) \forall x, y \in R$ if f(x) can be expressed as $f(x) = 1 + xP(x) + x^2Q(x)$ where $\lim_{x\to 0} P(x) = a$ and $\lim_{x\to 0} Q(x) = b$, then

f'(x) is equal to:

(a) a f(x)

(b) b f(x)

(c) (a+b) f(x)

(d) (a + 2b) f(x)

24.
$$\lim_{x \to \frac{\pi}{2}} \frac{\left(1 - \tan \frac{x}{2}\right)(1 - \sin x)}{\left(1 + \tan \frac{x}{2}\right)(\pi - 2x)^3} =$$

- (a) not exist
- (b) $\frac{1}{8}$
- (c) $\frac{1}{16}$
- (d) $\frac{1}{32}$

25. $\lim_{x\to\infty} \left(\frac{x-3}{x+2}\right)^x$ is equal to:

- (a) e
- (b) e^{-1}
- (c) e^{-5}
- (d) e

26. $\lim_{x \to \frac{\pi}{2}} (\cos x)^{\cos x}$ is:

- (a) 1
- (b) 0
- (c) $\frac{1}{6}$
- (d) $\frac{2}{a}$

27. If $\lim_{x\to c^-} \{\ln x\}$ and $\lim_{x\to c^+} \{\ln x\}$ exists finitely but they are not equal (where $\{\cdot\}$ denotes fractional part function), then:

- (a) 'c' can take only rational values
- (b) 'c' can take only irrational values
- (c) 'c' can take infinite values in which only one is irrational
- (d) 'c' can take infinite values in which only one is rational

28. $\lim_{x\to 0} \left(1 + \frac{a\sin bx}{\cos x}\right)^{\frac{1}{x}}$, where a, b are non-zero constants is equal to:

(a) $e^{a/b}$

(b) ab

(c) e^{ab}

(d) $e^{b/a}$

29. The value of
$$\lim_{x \to 0} \left((\cos x)^{\frac{1}{\sin^2 x}} + \frac{\sin 2x + 2\tan^{-1} 3x + 3x^2}{\ln (1 + 3x + \sin^2 x) + xe^x} \right)$$
 is:

(a) $\sqrt{e} + \frac{3}{2}$ (b) $\frac{1}{\sqrt{e}} + \frac{3}{2}$ (c) $\sqrt{e} + 2$ (d) $\frac{1}{\sqrt{e}} + 2$

30. Let
$$a = \lim_{x \to 1} \left(\frac{x}{\ln x} - \frac{1}{x \ln x} \right)$$
; $b = \lim_{x \to 0} \frac{x^3 - 16x}{4x + x^2}$; $c = \lim_{x \to 0} \frac{\ln(1 + \sin x)}{x}$ and

$$d = \lim_{x \to -1} \frac{(x+1)^3}{3[\sin(x+1) - (x+1)]}$$
, then the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is:

(a) Idempotent

(c) Non-singular

(d) Nilpotent

31. The integral value of
$$n$$
 so that $\lim_{x\to 0} f(x)$ where $f(x) = \frac{(\sin x - x)\left(2\sin x - \ln\left(\frac{1+x}{1-x}\right)\right)}{x^n}$ is a finite

non-zero number, is:

(a) 2

32. Consider the function
$$f(x) = \begin{cases} \frac{\max(x, \frac{1}{x})}{\min(x, \frac{1}{x})}, & \text{if } x \neq 0 \\ 1, & \text{then } \lim_{x \to 0^{-}} \{f(x)\} + \lim_{x \to 1^{-}} \{f(x)\} + \lim_{x \to 1^{-$$

$$\lim_{x\to -1^-}[f(x)] =$$

(where {·} denotes fraction part function and [·] denotes greatest integer function)

33.
$$\lim_{x \to \left(\frac{1}{\sqrt{2}}\right)^{+}} \frac{\cos^{-1}(2x\sqrt{1-x^{2}})}{\left(x-\frac{1}{\sqrt{2}}\right)} - \lim_{x \to \left(\frac{1}{\sqrt{2}}\right)^{-}} \frac{\cos^{-1}(2x\sqrt{1-x^{2}})}{\left(x-\frac{1}{\sqrt{2}}\right)} =$$

(d) 0

(a)
$$\sqrt{2}$$
 (b) $2\sqrt{2}$ (c) $4\sqrt{2}$
34. $\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sin \frac{\pi}{2k} - \cos \frac{\pi}{2k} - \sin \left(\frac{\pi}{2(k+2)} \right) + \cos \frac{\pi}{2(k+2)} \right) =$

(a) 0

(b) 1

(c) 2

(d) 3

35.
$$\lim_{x\to 0^+} [1+[x]]^{2/x}$$
, where [·] is greatest integer function, is equal to :

(a) 0

(b) 1

(c) e^2

(d) Does not exist

36.	If m and n are positive integers,	then	lim x→0	$(\cos x)^{1/t}$	$\frac{n-(n-1)^n}{x^2}$	cos x	$\frac{1^{1/n}}{n}$ equals to :
	(a) m = n			(L	, 1	1	

(c)
$$\frac{m-n}{2mn}$$
 (d) None of these

37. The value of ordered pair (a, b) such that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}=1$, is:

(a)
$$\left(-\frac{5}{2}, -\frac{3}{2}\right)$$
 (b) $\left(\frac{5}{2}, \frac{3}{2}\right)$ (c) $\left(-\frac{5}{2}, \frac{3}{2}\right)$ (d) $\left(\frac{5}{2}, -\frac{3}{2}\right)$

38. What is the value of a + b, if $\lim_{x \to 0} \frac{\sin(ax) - \ln(e^x \cos x)}{x \sin(bx)} = \frac{1}{2}$?

(a) 1 (b) 2 (c) 3 (d)
$$-\frac{1}{2}$$

39. Let $\alpha = \lim_{n \to \infty} \frac{(1^3 - 1^2) + (2^3 - 2^2) + ... + (n^3 - n^2)}{n^4}$, then α is equal to :

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) non existent

40. The value of $\lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^4}$ is equal to :

(a)
$$\frac{1}{5}$$
 (b) $\frac{1}{6}$ (c) $\frac{1}{4}$ (d) $\frac{1}{12}$

41. The value of ordered pair (a, b) such that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1$, is:

(a)
$$\left(-\frac{5}{2}, -\frac{3}{2}\right)$$
 (b) $\left(\frac{5}{2}, \frac{3}{2}\right)$ (c) $\left(-\frac{5}{2}, \frac{3}{2}\right)$ (d) $\left(\frac{5}{2}, -\frac{3}{2}\right)$

42. Consider the sequence :

$$u_n = \sum_{r=1}^n \frac{r}{2^r}, \quad n \ge 1$$

Then the limit of u_n as $n \to \infty$ is:

(a) 1 (b)
$$e$$
 (c) $\frac{1}{2}$ (d) 2

43. The value of $\lim_{x\to 0} \left((\cos x)^{\frac{1}{\sin^2 x}} + \frac{\sin 2x + 2\tan^{-1} 3x + 3x^2}{\ln (1 + 3x + \sin^2 x) + xe^x} \right)$ is :

(a)
$$\sqrt{e} + \frac{3}{2}$$
 (b) $\frac{1}{\sqrt{e}} + \frac{3}{2}$ (c) $\sqrt{e} + 2$ (d) $\frac{1}{\sqrt{e}} + 2$

44	For $n \in N$, let	$f_n(x) = \tan\frac{x}{2}(1 + \sec x)$	(1 + 8	$\sec 2x$) $(1 + \sec 4x)$	$(1 + \sec 2^n x)$, the
	$\lim_{x\to 0} \frac{f_n(x)}{2x}$ is equal to	:			
	(a) 0	(b) 2^n	(c)	2 ⁿ⁻¹	(d) 2^{n+1}
45.	The value of $\lim_{x \to \frac{\pi}{4}} (1 - \frac{\pi}{4})$	$+[x])^{\frac{1}{ln(\tan x)}}$ is:			
		reatest integer function).			
	(a) 0	(b) 1	(c)		(d) $\frac{1}{e}$
46.	If $\lim_{x\to 0} \frac{\{(a-n)nx - \tan x^2\}}{x^2}$	$\frac{\ln x}{\sin nx} = 0$, $n \neq 0$ then	ı a is	equal to :	
	(a) 0	(b) $1 + \frac{1}{n}$	(c)	n	(d) $n + \frac{1}{n}$
47.		$\int_{0}^{3n^3+4} \frac{1}{4n^4-1}, n \in N \text{ is equal to}$:		*
	(a) $\left(\frac{1}{e}\right)^{3/4}$	(b) $e^{3/4}$	(c)	e^{-1}	(d) 0
48.	The value of $\lim_{x\to\infty} \frac{ax^2}{a}$	$\frac{+bx+c}{dx+e}(a, b, c, d, e \in R)$	-{0}) depends on the s	sign of :
	(a) a only		(b)	d only	
	(c) a and d only			a, b and d only	
49.	Let $f(x) = \lim_{n \to \infty} \tan^{-1}$	$\left(4n^2\left(1-\cos\frac{x}{n}\right)\right)$ and $g(x)$	$= \frac{1}{n}$	$\lim_{n\to\infty} \frac{n^2}{2} \ln \cos \left(\frac{2x}{n} \right)$	then $\lim_{x\to 0} \frac{e^{-2g(x)} - e^{f(x)}}{x^6}$
	equals.	_			
	(a) $\frac{8}{3}$	3		<u>5</u> 3	(d) $\frac{2}{3}$
50. [If $f(x)$ be a cubic poly	momial and $\lim_{x\to 0} \frac{\sin^2 x}{f(x)} =$	$\frac{1}{3}$ the	en $f(1)$ can not be	equal to :
	() 0	a> =			(d) -2
51.]	$\lim_{x \to 0} \frac{2e^{\sin x} - e^{-\sin x} - 1}{x^2 + 2x}$	equals to :			
	(a) $\frac{3}{2}$	(b) $e^{3/2}$	(c)	2	(d) e ²

52. If $x_1, x_2, x_3, \dots, x_n$ are the roots of $x^n + ax + b = 0$, then the value of $(x_1 - x_2)(x_1 - x_3)(x_1 - x_4) \dots (x_1 - x_n)$ is equal to:

(a)
$$nx_1 + b$$

(b)
$$nx_1^{n-1} + a$$

(c)
$$nx_1^{n-1}$$

(d)
$$nx_1^{n-1}$$

53.
$$\lim_{x\to 0} \frac{\sqrt[3]{1+\sin^2 x} - \sqrt[4]{1-2\tan x}}{\sin x + \tan^2 x}$$
 is equal to :

(a)
$$-1$$

(c)
$$\frac{1}{2}$$

(d)
$$-\frac{1}{2}$$

54. If
$$f(x) = \begin{vmatrix} x \cos x & 2x \sin x & x \tan x \\ 1 & x & 1 \\ 1 & 2x & 1 \end{vmatrix}$$
, find $\lim_{x \to 0} \frac{f(x)}{x^2}$.

								A	150	ver				- 100					
1,	(b)	2.	(d)	3.	(d)	4.	(d)	5.	(b)	6.	(ъ)	7.	(d)	8.	(a)	9.	(c)	10.	(Ъ)
11.	(a)	12.	(a)	13.	(b)	14.	(d)	15.	(ъ)	16.	(a)	17.	(c)	18.	(a)	19.	(a)	20.	(c)
21.	(c)	22.	(c)	23.	(a)	24.	(d)	25.	(c)	26.	(a)	27.	(d)	28.	(c)	29.	(d)	30.	(d)
31.	(c)	32.	(a)	33.	(c)	34.	(d)	35.	(b)	36.	(c)	37.	(a)	38.	(b)	39.	(b)	40.	(Ъ)
41.	(a)	42.	(d)	43.	(d)	44.	(c)	45.	(b)	46.	(d)	47.	(a)	48.	(c)	49.	(a)	50.	(c)
51.	(a)	52.	(ъ)	53.	(c)	54.	(c)									Total Control			

Exercise-2: One or More than One Answer is/are Correct

1. If $\lim_{x\to 0} (p \tan qx^2 - 3\cos^2 x + 4)^{1/(3x^2)} = e^{5/3}$; $p, q \in R$ then:

(a)
$$p = \sqrt{2}$$
, $q = \frac{1}{2\sqrt{2}}$ (b) $p = \frac{1}{\sqrt{2}}$, $q = 2\sqrt{2}$ (c) $p = 1$, $q = 2$

(c)
$$p = 1, q = 2$$

(d)
$$p = 2, q = 4$$

2. $\lim_{x \to \infty} 2(\sqrt{25x^2 + x} - 5x)$ is equal to :

(a)
$$\lim_{x \to 0} \frac{2x - \log_e (1+x)^2}{5x^2}$$

(b)
$$\lim_{x\to 0} \frac{e^{-x} - 1 + x}{x^2}$$

(c)
$$\lim_{x \to 0} \frac{2(1-\cos x^2)}{5x^4}$$

(d)
$$\lim_{x\to 0} \frac{\sin\frac{x}{5}}{x}$$

3. Let
$$\lim_{x\to\infty} (2^x + a^x + e^x)^{1/x} = L$$

which of the following statement(s) is(are) correct?

- (a) if L = a(a > 0), then the range of a is $[e, \infty)$
- (b) if L = 2e(a > 0), then the range of a is $\{2e\}$
- (c) if L = e(a > 0), then the range of a is (0, e]

(d) if
$$L = 2a (a > 1)$$
, then the range of a is $\left(\frac{e}{2}, \infty\right)$

4. Let $\tan \alpha \cdot x + \sin \alpha \cdot y = \alpha$ and $\alpha \csc \alpha \cdot x + \cos \alpha \cdot y = 1$ be two variable straight lines, α being the parameter. Let P be the point of intersection of the lines. In the limiting position when $\alpha \rightarrow 0$, the point *P* lies on the line :

(a)
$$x = 2$$

(b)
$$x = -1$$

(c)
$$y + 1 = 0$$

(d)
$$y = 2$$

- **5.** Let $f: R \to [-1, 1]$ be defined as $f(x) = \cos(\sin x)$, then which of the following is (are) correct?
 - (a) f is periodic with fundamental period 2π (b) Range of $f = [\cos 1, 1]$

(c)
$$\lim_{x \to \frac{\pi}{2}} \left(f\left(\frac{\pi}{2} - x\right) + f\left(\frac{\pi}{2} + x\right) \right) = 2$$

- (d) f is neither even nor odd function
- **6.** Let $f(x) = x + \sqrt{x^2 + 2x}$ and $g(x) = \sqrt{x^2 + 2x} x$, then:

(a)
$$\lim_{x\to\infty} g(x) = 1$$
 (b) $\lim_{x\to\infty} f(x) = 1$

(b)
$$\lim f(x) = 1$$

(c)
$$\lim_{x\to-\infty} f(x) = -1$$
 (d) $\lim_{x\to\infty} g(x) = -1$

(d)
$$\lim_{x \to \infty} g(x) = -1$$

7. Which of the following limits does not exist?

(a)
$$\lim_{x \to \infty} \csc^{-1} \left(\frac{x}{x+7} \right)$$

(b)
$$\lim_{x \to 1} \sec^{-1} (\sin^{-1} x)$$

(c)
$$\lim_{x\to 0^+} x^{\frac{1}{x}}$$

(d)
$$\lim_{x\to 0} \left(\tan \left(\frac{\pi}{8} + x \right) \right)^{\cot x}$$

- **8.** If $f(x) = \lim_{n \to \infty} x \left(\frac{3}{2} + [\cos x] \left(\sqrt{n^2 + 1} \sqrt{n^2 3n + 1} \right) \right)$ where [y] denotes largest integer $\leq y$, then identify the correct statement(s).
 - (a) $\lim_{x\to 0} f(x) = 0$

- (b) $\lim_{x \to \frac{\pi}{2}} f(x) = \frac{3\pi}{4}$
- (c) $f(x) = \frac{3x}{2} \forall x \in \left[0, \frac{\pi}{2}\right]$
- (d) $f(x) = 0 \forall x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$
- 9. Let $f: R \to R$; $f(x) = \begin{cases} (-1)^n & \text{if } x = \frac{1}{2^{2^n}}, n = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$

then identify the correct statement(s).

(a) $\lim_{x\to 0} f(x) = 0$

(b) $\lim_{x\to 0} f(x)$ does not exist

(c) $\lim_{x\to 0} f(x) f(2x) = 0$

- (d) $\lim_{x\to 0} f(x) f(2x)$ does not exist
- **10.** If $\lim_{x \to a} f(x) = \lim_{x \to a} [f(x)]$ ([] denotes the greatest integer function) and f(x) is non-constant continuous function, then:
 - (a) $\lim_{x\to a} f(x)$ is an integer

- (b) $\lim_{x\to a} f(x)$ is non-integer
- (c) f(x) has local maximum at x = a
- (d) f(x) has local minimum at x = a
- 11. Let $f(x) = \frac{\cos^{-1}(1 \{x\})\sin^{-1}(1 \{x\})}{\sqrt{2\{x\}}(1 \{x\})}$ where $\{x\}$ denotes the fractional part of x, then:
 - (a) $\lim_{x\to 0^+} f(x) = \frac{\pi}{4}$

(b) $\lim_{x \to 0^+} f(x) = \sqrt{2} \lim_{x \to 0^-} f(x)$ (d) $\lim_{x \to 0^-} f(x) = \frac{\pi}{2\sqrt{2}}$

(c) $\lim_{x \to 0^{-}} f(x) = \frac{\pi}{4\sqrt{2}}$

- **12.** If $\lim_{x \to 0} \frac{(\sin(\sin x) \sin x)}{ax^3 + bx^5 + c} = -\frac{1}{12}$, then:
- (c) c = 0
- 13. If $f(x) = \lim_{n \to \infty} (n(x^{1/n} 1))$ for x > 0, then which of the following is/are true?
 - (a) $f\left(\frac{1}{x}\right) = 0$

(b) $f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$

(c) $f\left(\frac{1}{x}\right) = -f(x)$

(d) f(xy) = f(x) + f(y)

14. The value of $\lim_{n\to\infty} \cos^2 (\pi (\sqrt[3]{n^3 + n^2 + 2n}))$ (where $n \in N$):

- (b) $\frac{1}{2}$ (c) $\frac{1}{4}$

15. If $\alpha, \beta \in \left(-\frac{\pi}{2}, 0\right)$ such that $(\sin \alpha + \sin \beta) + \frac{\sin \alpha}{\sin \beta} = 0$ and $(\sin \alpha + \sin \beta) + \frac{\sin \alpha}{\sin \beta} = -1$ and $\lambda = \lim_{n \to \infty} \frac{1 + (2\sin\alpha)^{2n}}{(2\sin\beta)^{2n}} \text{ then :}$

- (a) $a = -\frac{\pi}{6}$ (b) $\lambda = 2$ (c) $\alpha = -\frac{\pi}{3}$ (d) $\lambda = 1$

16. Let $f(x) = \begin{cases} |x-2| + a^2 - 6a + 9 & , & x < 2 \\ 5 - 2x & , & x \ge 2 \end{cases}$

If $\lim_{x\to 2} [f(x)]$ exists, the possible values a can take is/are (where [·] represents the greatest integer function)

- (a) 2
- (b) $\frac{5}{2}$
- (c) 3
- (d) $\frac{7}{2}$

					Ansv	vers	1			A	
1.	(b, c)	2.	(a, c, d)	3.	(a, b, c)	4.	(a, c)	5.	(b, c)	6.	(a, c)
70	(a, d)	3.	(a, c, d)	9.	(b, c)	10.	(a, d)	11.	(b, d)	12.	(a, c)
	(c, d)	36.	(c)	15.	(a, b)	16.	(b)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

A circular disk of unit radius is filled with a number of smaller circular disks arranged in the form of hexagon. Let A_n denotes a stack of disks arranged in the shape of a hexagon having 'n' disks on a side. The figure shows the configuration A_3 . If 'A' be the area of large disk, S_n be the number of disks in A_n configuration and r_n be the radius of each disk in A_n configuration, then

- 1. $\lim_{n\to\infty}\frac{S_n}{n^2}$:
 - (a) 3
- (b) 4
- (c) 1
- (d) 11

- **2.** $\lim_{n\to\infty} nr_n$:
 - (a) $\frac{1}{3}$
- (b) $\frac{1}{2}$
- (d) $\frac{1}{11}$

Paragraph for Question Nos. 3 to 4

Let
$$f(x) = \begin{bmatrix} x+3 & ; & -2 < x < 0 \\ 4 & ; & x=0 \\ 2x+5 & ; & 0 < x < 1 \end{bmatrix}$$
, then

- **3.** $\lim_{x \to \infty} f([x \tan x])$ is : ([·] denotes greatest integer function)
 - (a) 2
- (b) 4
- (c) 5
- (d) None of these
- **4.** $\lim_{x\to 0^+} f\left(\left\{\frac{x}{\tan x}\right\}\right)$ is : ({·} denotes fractional part of function)
 - (a) 4
- (b) 5
- (c) 7
- (d) None of these

Paragraph for Question Nos. 5 to 6

A certain function f(x) has the property that $f(3x) = \alpha f(x)$ for all positive real values of x and f(x) = 1 - |x - 2| for $1 \le x \le 3$.

- 5. $\lim_{x\to 2} (f(x))^{\operatorname{cosec}\left(\frac{\pi x}{2}\right)}$ is:
 - (a) $\frac{2}{\pi}$ (c) $e^{2/\pi}$

(d) Non-existent

- **6.** If the total area bounded by y = f(x) and x-axis in $[1, \infty)$ converges to a finite quantity, then the range of α is:
 - (a) (-1,1)
- (b) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (c) $\left(-\frac{1}{3}, \frac{1}{3}\right)$ (d) $\left(-\frac{1}{4}, \frac{1}{4}\right)$

Paragraph for Question Nos. 7 to 9

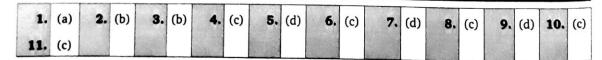
Consider the limit $\lim_{x\to 0} \frac{1}{x^3} \left(\frac{1}{\sqrt{1+x}} - \frac{(1+ax)}{(1+bx)} \right)$ exists, finite and has the value equal to l(where a, b are real constants), then:

- 7. a =
 - (a) 1
- (c) $\frac{1}{2}$
- (d) $\frac{1}{4}$

- **8.** a + b =
 - (a) $\frac{3}{4}$
- (c) 1
- (d) 0

- **9.** $\left| \frac{b}{l} \right| =$
 - (a) 38
- (b) 16
- (c) 72
- (d) 24

Paragraph for Question Nos. 10 to 11


For the curve $\sin x + \sin y = 1$ lying in the first quadrant there exists a constant α for which

$$\lim_{x \to 0} x^{\alpha} \frac{d^2 y}{dx^2} = L \text{ (not zero)}$$

- **10.** The value of α :
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{\sqrt{2}}$
- (c) $\frac{3}{2}$
- (d) 2

- 11. The value of L:
 - (a) $\frac{1}{2}$
- (b) 1
- (c) $\frac{1}{2\sqrt{2}}$
- (d) $\frac{1}{2\sqrt{3}}$

Answers

Exercise-4: Matching Type Problems

1.

1	Column-I	1	Column-II
(A)	$\lim_{n\to\infty}\left(\frac{1+\sqrt[n]{4}}{2}\right)^n=$	(P)	2
(B)	Let $f(x) = \lim_{n \to \infty} \frac{2x}{\pi} \tan^{-1}(nx)$, then $\lim_{x \to 0^+} f(x) = \frac{1}{n}$	(Q)	0
(C)	$\lim_{x \to \frac{\pi^+}{2}} \frac{\cos(\tan^{-1}(\tan x))}{x - \frac{\pi}{2}} =$	(R)	1
(D)	If $\lim_{x\to 0^+} (x)^{\frac{1}{\ln \sin x}} = e^L$, then $L+2=$	(S)	3
		(T)	Non-existent

1	Column-I		Column-II
(A)	If $f(x) = \sin^{-1} x$ and $\lim_{x \to \frac{1^+}{2}} f(3x - 4x^3) = a - 3 \lim_{x \to \frac{1^+}{2}} f(x)$, then $[a] =$	(P)	2
	If $f(x) = \tan^{-1} g(x)$ where $g(x) = \frac{3x - x^3}{1 - 3x^2}$ and then find	(Q)	3
	$\left[\lim_{h\to 0} \frac{f\left(\frac{1}{2} + 6h\right) - f\left(\frac{1}{2}\right)}{6h}\right] =$		
(C)	If $\cos^{-1}(4x^3 - 3x) = a + b\cos^{-1}x$ for $-1 < x < \frac{-1}{2}$, then $[a + b + 2] =$	(R)	4
(D)	If $f(x) = \cos^{-1}(4x^3 - 3x)$ and $\lim_{x \to \frac{1}{2}^+} f'(x) = a$ and $\lim_{x \to \frac{1}{2}^-} f'(x) = b$,	(S)	-2
	then $a + b + 3 =$		
		(T)	Non existent

Answers

- 1. $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$
- 2. $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow Q$

Exercise-5 : Subjective Type Problems

1. If
$$\lim_{x\to 0} \frac{\ln\cot\left(\frac{\pi}{4} - \beta x\right)}{\tan\alpha x} = 1$$
, then $\frac{\alpha}{\beta} = \dots$

2. If
$$\lim_{x\to 0} \frac{f(x)}{\sin^2 x} = 8$$
, $\lim_{x\to 0} \frac{g(x)}{2\cos x - xe^x + x^3 + x - 2} = \lambda$ and $\lim_{x\to 0} (1 + 2f(x))^{\frac{1}{g(x)}} = \frac{1}{e}$, then $\lambda = \frac{1}{e}$

- 3. If α , β are two distinct real roots of the equation $ax^3 + x 1 a = 0$, $(a \ne -1, 0)$, none of which is equal to unity, then the value of $\lim_{x \to (1/\alpha)} \frac{(1+a)x^3 x^2 a}{(e^{1-\alpha x} 1)(x-1)}$ is $\frac{al(k\alpha \beta)}{\alpha}$. Find the value of kl.
- **4.** The value of $\lim_{x \to 0} \frac{(140)^x (35)^x (28)^x (20)^x + 7^x + 5^x + 4^x 1}{x \sin^2 x} = 2 \ln 2 \ln k \ln 7$, then k = 0
- **5.** If $\lim_{x\to 0} \frac{a \cot x}{x} + \frac{b}{x^2} = \frac{1}{3}$, then $b-a = \frac{1}{3}$
- **6.** Find the value of $\lim_{x \to \infty} \left(x + \frac{1}{x} \right) e^{1/x} x$.
- 7. Find $\lim_{x \to \alpha^+} \left[\frac{\min(\sin x, \{x\})}{x 1} \right]$ where α is root of equation $\sin x + 1 = x$ (here [·] represent greatest integer and {·} represent fractional part function)

				- 144 - 144		Ansv	ver	s				1. 1	1
1.	2	2.	8	3.	1	4.	5	5.	2	6.	1	7.	0

Chapter 3 - Continuity, Differentiability and Differentiation

CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

	Exe	rcise-1 : Single	Choi	ce Problems			
1.				le real valued fund $f''(0), f''(1), f''(2)$			+2y) = f(x) + f(2y) +
	(a) A	AP	(b)	GP '	(c)	HP	(d) None of these
2.	The	number of points	of no	n-differentiability fo	r f(x	$x) = \max \left\{ x - 1 \right\}$	$\left(\frac{1}{2}\right)$ is:
	(a)		(b)		(c)		(d) 5
3.	Nun	nber of points of o	liscon	tinuity of $f(x) = \left\{\frac{x}{5}\right\}$	+[$\left[\frac{x}{2}\right]$ in $x \in [0, 100]$ i	s/are (where [·] denotes
	grea	itest integer funct	ion ar	nd {·} denotes fraction	nal p	art function)	
	(a)	50	(b)	51	(c)	52	(d) 61
4.	If $f($	(x) has isolated po	int of	discontinuity at $x = a$	such	that $ f(x) $ is con-	tinuous at $x = a$ then:
	(a)	$\lim_{x \to a} f(x) \operatorname{does} \operatorname{no}$	t exis	t	(b)	$\lim_{x\to a} f(x) + f(a) =$	= 0
	(c)	f(a) = 0			(d)	None of these	
5.	If <i>f</i> ((x) is a thrice diff	erenti	able function such th	at, l	$\lim_{x \to 0} \frac{f(4x) - 3f(3x)}{x}$	$\frac{1+3f(2x)-f(x)}{x^3} = 12$
	ther	n the value of f''' (0) equ	ials to:			
	(a)	0	(b)	1	(c)	12	(d) None of these
_			1	+		1	
0.	y =	$1 + (\tan \theta)^{\sin \theta - \cos \theta}$	⁶ + (c	$\frac{1}{(\cot \theta)^{\cos \theta - \cot \theta}} + \frac{1}{1 + (\cot \theta)^{\cos \theta - \cot \theta}}$	an θ	$\int_{\cos\theta-\sin\theta}^{\cos\theta-\sin\theta} + (\cot\theta)$	$\sin \theta - \cot \theta$
	+-	$\frac{1}{+(\tan\theta)^{\cos\theta-\cot\theta}}$	+ (cot	$\frac{dy}{(\theta)^{\cot\theta-\sin\theta}}$ then $\frac{dy}{dx}$	at θ =	$=\pi/3$ is:	
	(a)				(b)		
		$\sqrt{3}$			(d)	None of these	
7	. Let	$f'(x) = \sin(x^2) a$	nd y :	$= f(x^2 + 1)$ then $\frac{dy}{dx}$	at <i>x</i> =	= 1 is :	×
		2 sin 2		2 cos 2		2 sin 4	(d) cos 2

8. If $f(x) = |\sin x - |\cos x|$, then $f'(\frac{7\pi}{6}) =$

(a)
$$\frac{\sqrt{3}+1}{2}$$

(b) $\frac{1-\sqrt{3}}{2}$

(c)
$$\frac{\sqrt{3}-1}{2}$$

(d) $\frac{-1-\sqrt{3}}{2}$

9. If $2\sin x \cdot \cos y = 1$, then $\frac{d^2y}{dx^2}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is

(a) -4 (b) -2 (c) -6 (d) 0 **10.** f is a differentiable function such that $x = f(t^2)$, $y = f(t^3)$ and $f'(1) \neq 0$ if $\left(\frac{d^2y}{dx^2}\right)_{x=0}$

(a)
$$\frac{3}{4} \left(\frac{f''(1) + f'(1)}{(f'(1))^2} \right)$$

(b) $\frac{3}{4} \left(\frac{f'(1) \cdot f''(1) - f''(1)}{(f'(1))^2} \right)$

(c)
$$\frac{4}{3} \frac{f''(1)}{(f'(1))^2}$$

(d) $\frac{4}{3} \left[\frac{f'(1)f''(1) - f''(1)}{(f'(1))^2} \right]$

11. Let $f(x) = \begin{cases} ax + 1 & \text{if } x < 1 \\ 3 & \text{if } x = 1. \text{ If } f(x) \text{ is continuous at } x = 1 \text{ then } (a - b) \text{ is equal to } : \\ bx^2 + 1 & \text{if } x > 1 \end{cases}$

12. If $y = 1 + \frac{\alpha}{\left(\frac{1}{x} - \alpha\right)} + \frac{\beta/x}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)} + \frac{\beta/x}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \gamma\right)}$, then $\frac{dy}{dx}$ is:

(a)
$$y\left(\frac{\alpha}{\alpha-x}+\frac{\beta}{\beta-x}+\frac{\gamma}{\gamma-x}\right)$$

(a) $y \left(\frac{\alpha}{\alpha - x} + \frac{\beta}{\beta - x} + \frac{\gamma}{\gamma - x} \right)$ (b) $\frac{y}{x} \left(\frac{\alpha}{1/x - \alpha} + \frac{\beta}{1/x - \beta} + \frac{\gamma}{1/x - \gamma} \right)$

(c)
$$y\left(\frac{\alpha}{1/x-\alpha} + \frac{\beta}{1/x-\beta} + \frac{\gamma}{1/x-\gamma}\right)$$

(c) $y \left(\frac{\alpha}{1/x - \alpha} + \frac{\beta}{1/x - \beta} + \frac{\gamma}{1/x - \gamma} \right)$ (d) $\frac{y}{x} \left(\frac{\alpha/x}{1/x - \alpha} + \frac{\beta/x}{1/x - \beta} + \frac{\gamma/x}{1/x - \gamma} \right)$

13. If $f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 - \tan^{-1} x}}$; then f'(0) is equal to :

14. Let $f(x) = \begin{cases} \sin^2 x & \text{, } x \text{ is rational} \\ -\sin^2 x & \text{, } x \text{ is irrational} \end{cases}$, then set of points, where f(x) is continuous, is:

(a)
$$\left\{ (2n+1)\frac{\pi}{2}, n \in I \right\}$$

(b) a null set

(c) $\{n\pi, n \in I\}$

(d) set of all rational numbers

15.	The number of values of	of x in $(0, 2\pi)$ where the i	function $f(x) = \frac{\tan x}{2}$	$\frac{-\cot x}{2} - \left \frac{\tan x - \cot x}{2} \right $ is
16.	continuous but non-der (a) 3 If $f(x) = x-1 $ and $g(x)$ (a) 1 for $x > 2$	rivable: (b) 4 f(f(f(x))), then $g'(f(x))(b) 1 for 2 < x < 3$	(c) 0 (x) is equal to: (c) -1 for 2 < x < 3	(d) 1 (d) -1 for $x > 3$
17.	If $f(x)$ is a continuous	function $\forall x \in R$ and the	e range of $f(x)$ is $(2, $	$\sqrt{26}$) and $g(x) = \left\lfloor \frac{f(x)}{C} \right\rfloor$ is
	continuous $\forall x \in R$, the integer function.)	en the least positive integ	gral value of C is : (whe	re[·] denotes the greatest
	(a) 3	(b) 5	(c) 6	(d) 7
18.	If $y = x + e^x$, then $\left(\frac{d^2}{dy}\right)$	· x - m 2		
	(a) $-\frac{1}{9}$	(b) $-\frac{2}{27}$	(c) $\frac{2}{27}$	(d) $\frac{1}{9}$
19.	$Let f(x) = x^3 + 4x^2 +$	6x and $g(x)$ be its invers	se then the value of g'	(-4):
	(a) -2	(b) 2	(c) $\frac{1}{2}$	(d) None of these
20.	If $f(x) = 2 + x - x - 1 $	$1 - x+1 $, then $f'\left(-\frac{1}{2}\right)$	$+f'\left(\frac{1}{2}\right)+f'\left(\frac{3}{2}\right)+f'\left(\frac{3}{2}\right)$	$\left(\frac{5}{2}\right)$ is equal to :
	(a) 1	(b) -1	(c) 2	(d) -2
21.]); $0 < x < 1$, (where [·] do	enotes greatest integer	function) then $f'\left(\frac{\sqrt{\pi}}{2}\right)$ is
	equal to :	Īπ		T.
	V 2	V 2	(c) 0	(d) $\sqrt{\frac{\pi}{4}}$
22.	Let $g(x)$ be the inverse	e of $f(x)$ such that $f'(x)$	$=\frac{1}{1+x^5}$, then $\frac{d^2(g(x))}{dx^2}$	r)) is equal to :
	(a) $\frac{1}{1+(g(x))^5}$		(b) $\frac{g'(x)}{1+(g(x))^5}$	
	(c) $5(g(x))^4(1+(g(x))^4)$	r)) ⁵)	(d) $1 + (g(x))^5$	
23.	,	$\begin{pmatrix} x^2 \\ x-1 \end{pmatrix}$ $\begin{pmatrix} x \ge 0 \\ x < 0 \end{pmatrix}$, then which	h of the following is n	ot true ?
	(a) $f(x)$ is not different	entiable at $x = 0$		
	(b) $f(x)$ is not different	entiable at exactly two p	oomts	

- (c) f(x) is continuous everywhere
- (d) f(x) is strictly increasing $\forall x \in R$
- **24.** If $f(x) = \lim_{n \to \infty} \left(\prod_{i=1}^n \cos \left(\frac{x}{2^i} \right) \right)$ then f'(x) is equal to:
- (a) $\frac{\sin x}{x}$ (b) $\frac{x}{\sin x}$ (c) $\frac{x \cos x \sin x}{x^2}$ (d) $\frac{\sin x x \cos x}{\sin^2 x}$

25. Let $f(x) = \begin{cases} \frac{1 - \tan x}{4x - \pi} & x \neq \frac{\pi}{4}; x \in \left[0, \frac{\pi}{2}\right). \\ \lambda & x = \frac{\pi}{4} \end{cases}$

If f(x) is continuous in $\left[0, \frac{\pi}{2}\right]$ then λ is equal to:

- (a) 1
- (c) $-\frac{1}{2}$
- (d) -1

- **26.** Let $f(x) = \begin{cases} e^{-\frac{1}{x^2}} \sin \frac{1}{x} & x \neq 0, \text{ then } f'(0) = 0 \\ 0 & x = 0 \end{cases}$
 - (a) 1
- (c) 0
- (d) Does not exist
- **27.** Let f be a differentiable function satisfying $f'(x) = 2f(x) + 10 \ \forall \ x \in R$ and f(0) = 0, then the number of real roots of the equation $f(x) + 5 \sec^2 x = 0$ in $(0, 2\pi)$ is:
- (c) 2
- (d) 3
- **28.** If $f(x) = \begin{cases} \frac{\sin{\{\cos x\}}}{x \frac{\pi}{2}} & x \neq \frac{\pi}{2} \\ 1 & x = \frac{\pi}{2} \end{cases}$, where $\{k\}$ represents the fractional part of k, then :
 - (a) f(x) is continuous at $x = \frac{\pi}{2}$
 - (b) $\lim_{x \to \frac{\pi}{2}} f(x)$ does not exist
 - (c) $\lim_{x \to \frac{\pi}{2}} f(x)$ exists, but f is not continuous at $x = \frac{\pi}{2}$
- **29.** Let f(x) be a polynomial in x. The second derivative of $f(e^x)$ w.r.t. x is:
 - (a) $f''(e^x)e^x + f'(e^x)$

(b) $f''(e^x)e^{2x} + f'(e^x)e^{2x}$

(c) $f''(e^x)e^x + f'(e^x)e^{2x}$

(d) $f''(e^x)e^{2x} + e^x f'(e^x)$

30. If $e^{f(x)} = \log_e x$ and $g(x)$ is the inverse function of $f(x)$, then $g'(x)$ is e	equal to:
--	-----------

- (a) $e^x + x$
- (b) $e^{e^{e^x}}e^{e^x}e^x$
- (d) e^{e^x}

31. If
$$y = f(x)$$
 is differentiable $\forall x \in R$, then

- (a) y = |f(x)| is differentiable $\forall x \in R$
- (b) $y = f^2(x)$ is non-differentiable for at least one x
- (c) y = f(x)|f(x)| is non-differentiable for at least one x
- (d) $y = |f(x)|^3$ is differentiable $\forall x \in R$

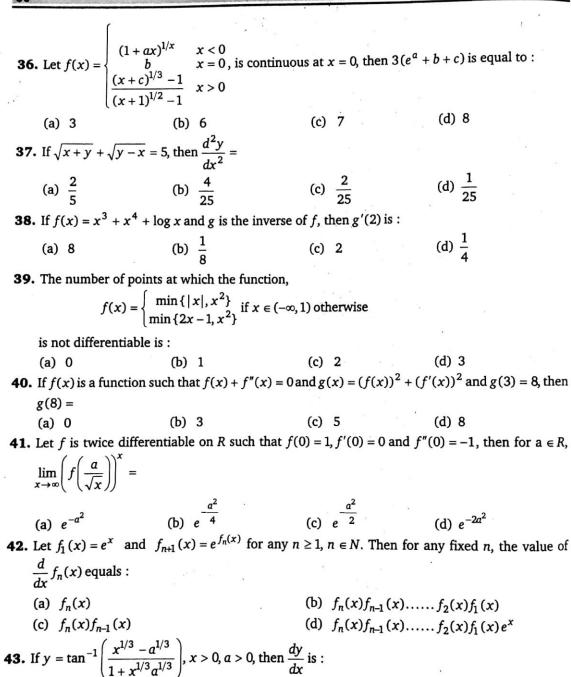
32. If
$$f(x) = (x-1)^4(x-2)^3(x-3)^2$$
 then the value of $f'''(1) + f''(2) + f'(3)$ is:

- (c) 2

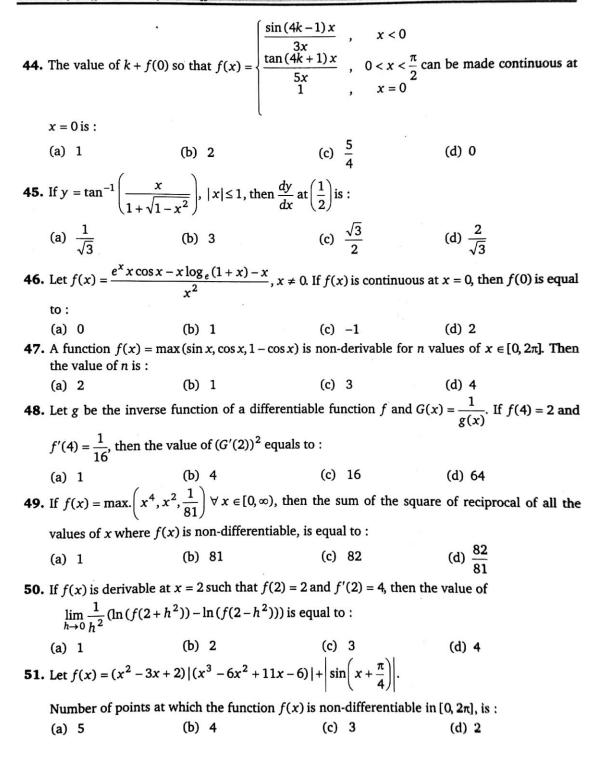
33. If
$$f(x) = \left(\frac{x}{2}\right) - 1$$
, then on the interval $[0, \pi]$:

- (a) tan(f(x)) and $\frac{1}{f(x)}$ are both continuous
- (b) tan(f(x)) and $\frac{1}{f(x)}$ are both discontinuous
- (c) tan(f(x)) and $f^{-1}(x)$ are both continuous
- (d) $\tan f(x)$ is continuous but $f^{-1}(x)$ is not

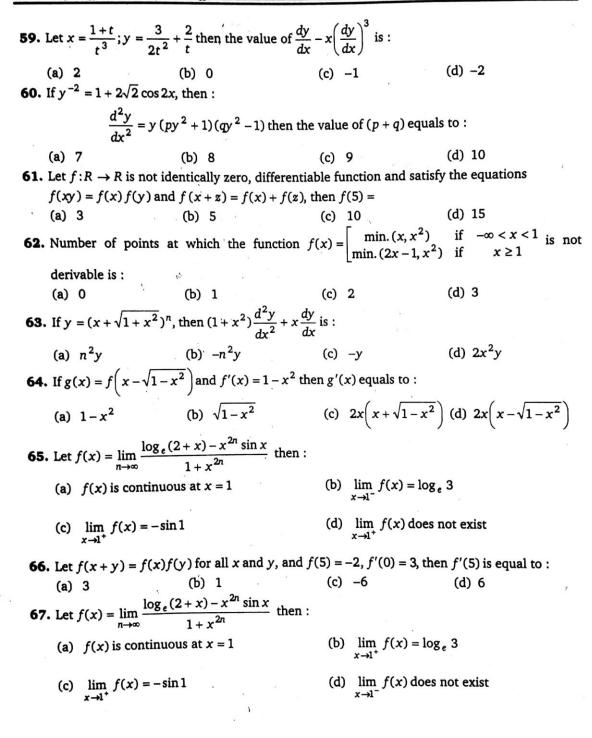
34. Let
$$f(x) = \begin{cases} \frac{e^{\frac{1}{x-2}} - 3}{\frac{1}{3^{x-2}} + 1} & x > 2\\ \frac{b \sin{\{-x\}}}{\{-x\}} & x < 2, \text{ where } \{\cdot\} \text{ denotes fraction part function, is continuous at } x = 2,\\ c & x = 2 \end{cases}$$


then b + c =

(a) 0 (b) 1 (c) 2 (d) 4


35. Let
$$f(x) = \frac{e^{\tan x} - e^x + \ln(\sec x + \tan x) - x}{\tan x - x}$$
 be a continuous function at $x = 0$. The value of

f(0) equals:


- (a) $\frac{1}{2}$
- (b) $\frac{2}{3}$ (c) $\frac{3}{2}$
- (d) 2

(a) $\frac{1}{x^{2/3}(1+x^{2/3})}$ (b) $\frac{3}{x^{2/3}(1+x^{2/3})}$ (c) $\frac{1}{3x^{2/3}(1+x^{2/3})}$ (d) $\frac{1}{3x^{1/3}(1+x^{2/3})}$

	g be differentiable funct			
g(1)=2=g	'(1) and $f'(0) = 4$. If $h(x) =$	$= f(2xg(x) + \cos \pi x - 3)$	3) then $h'(1)$ is equal to	:
(a) 28	(b) 24	(c) 32	(d) 18	((*)
53. If $f(x) = \frac{(x)^2}{(x)^2}$	$\frac{(x+1)^7 \sqrt{1+x^2}}{(x^2-x+1)^6}$, then the val	tue of $f'(0)$ is equal to	: '	
(a) 10	(b) 11	(c) 13	(d) 15	
54. Statement	-1: The function $f(x) = \lim_{n \to \infty} f(x) = \lim_{n \to \infty} f(x)$	$\lim_{n\to\infty} \frac{\log_e (1+x) - x^{2n} \sin x}{1+x^{2n}}$	$\frac{1(2x)}{1}$ is discontinuous	at $x = 1$.
Statement	-2: L. H. L = R. H. L ≠ $f(1)$.	0		
(a) Stateme Stateme	ent-1 is true, Statement-2 ent-1	is true and Stateme	nt-2 is correct explan	ation for
(b) Stateme Stateme	ent-1 is true, Statement-2 is ent-1	true and Statement-2	is not the correct explar	ation for
(c) Stateme	ent-1 is true, Statement-2 is	s false		
	nt-1 is false, Statement-2 i		" , ∜ •	
55. If $f(x) = \begin{bmatrix} x \\ 1 \end{bmatrix}$	x; if x is rational, the x ; if x is irrational,	en number of points	for $x \in R$, where $y = f$	(f(x)) is
discontinuou	s is:			8
(a) 0	(b) 1	(c) 2	(d) Infinitely r	nany
56. Number of po	(b) 1 points where $f(x) = \begin{cases} \max(x) \\ m \end{cases}$	$ x^2 - x - 2 , x^2 - 3x $ $ ax(\ln(-x), e^x)$	$; x \ge 0$ $; x < 0$	
is non-differe	ntiable will be :			
(a) 1	(b) 2	(c) 3	(d) None of th	iese
57. If the function	$f(x) = -4e^{\frac{1-x}{2}} + 1 + x + \frac{x}{2}$	$\frac{x^2}{2} + \frac{x^3}{3}$ and $g(x) = f^{-1}$	$^{1}(x)$, then the value o	$f g' \left(\frac{-7}{6}\right)$
equals to:		_		
(a) $\frac{1}{5}$	(b) $-\frac{1}{5}$	(c) $\frac{6}{7}$	(d) $-\frac{6}{7}$	
58. Find k ; if poss $f(x)$	ible; so that $ \int \frac{\ln(2-\cos 2x)}{\ln^2(1+\sin 3x)}; x \\ \frac{k}{e^{\sin 2x}-1}; x \\ \frac{e^{\sin 2x}-1}{\ln(1+\tan 9x)}; x $	< 0 = 0 > 0		
is continuous a	at x = 0.			
(a) $\frac{2}{3}$	(b) $\frac{1}{9}$	(c) $\frac{2}{9}$	(d) Not possib	le

68. If
$$f(x) = \begin{cases} \frac{x - e^x + 1 - \{1 - \cos 2x\}}{x^2} & x \neq 0 \\ k & x = 0 \end{cases}$$
 is continuous at $x = 0$ then, which of the

following statement is false?

(a)
$$k = \frac{-5}{2}$$
 (b) $\{k\} = \frac{1}{2}$

(b)
$$\{k\} = \frac{1}{2}$$

(c)
$$[k] = -2$$

(d)
$$[k] \{k\} = \frac{-3}{2}$$

(where [·] denotes greatest integer function and {·} denotes fraction part function.)

69. Let $f(x) = ||x^2 - 10x + 21| - p|$; then the exhaustive set of values of p for which f(x) has exactly 6 points of non-derivability; is:

(a) $(4, \infty)$

(c) [0, 4]

(d) (-4, 4)

(a)
$$(4, \infty)$$
 (b) $(0, 4)$
70. If $f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 - \tan^{-1} x}}$; then $f'(0)$ is equal to:

(d) 1

(a) 4 (b) 3 (c) 2
71. For
$$t \in (0, 1)$$
; let $x = \sqrt{2^{\sin^{-1} t}}$ and $y = \sqrt{2^{\cos^{-1} t}}$,

then $1 + \left(\frac{dy}{dx}\right)^2$ equals:

(a)
$$\frac{x^2}{y^2}$$

(a) $\frac{x^2}{v^2}$ (b) $\frac{y^2}{v^2}$ (c) $\frac{x^2 + y^2}{v^2}$ (d) $\frac{x^2 + y^2}{v^2}$

72. Let f(x) = -1 + |x-2| and g(x) = 1 - |x| then set of all possible value(s) of x for which (fog) (x) is discontinuous is:

(a) {0, 1, 2}

(b) {0, 2}

(c) {0}

(d) an empty set

73. If $f(x) = [x] \tan (\pi x)$ then $f'(K^+)$ is equal to $(k \in I)$ and [...] denotes greatest integer function):

(a)
$$(k-1)\pi(-1)^k$$

(c) $k\pi(-1)^{k+1}$

(d) $(k-1)\pi(-1)^{k+1}$

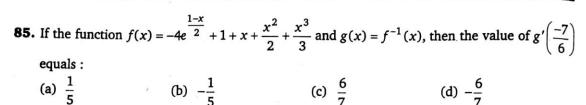
74. If
$$f(x) = \begin{bmatrix} \frac{ae^{\sin x} + be^{-\sin x} - c}{x^2}; & x \neq 0 \\ 2 & ; & x = 0 \end{bmatrix}$$
 is continuous at $x = 0$; then:

(a) a = b = c (b) a = 2b = 3c

(c) a = b = 2c

75. If $\tan x \cdot \cot y = \sec \alpha$ where α is constant and $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ then $\frac{d^2y}{dx^2}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ equals to :

76. If $y = (x-3)(x-2)(x-1) \times (x+1)(x+2)(x+3)$, then $\frac{d^2y}{dx^2}$ at x=1 is :


(a) -101

(b) 48

(c) 56

(d) 190

77. Let con	f(x+y) = f(x)f(y)tinuous at :	$\forall x,y \in R, f(0) \neq 0. \text{ I}$			at $x = 0$, then $f(x)$ is
(a)	all natural number	rs only	(b)	all integers only	
	all rational numbe	•		all real numbers	
	$f(x) = 3x^9 - 2x^4 + x^4$	$2x^3 - 3x^2 + x + \cos x + 5$	5 and	$g(x) = f^{-1}(x); t$	then the value of $g'(6)$
(a)	1	(b) $\frac{1}{2}$	(c)	2	(d) 3
79. If y	y = f(x) and $z = g(x)$	c) then $\frac{d^2y}{dz^2}$ equals	#- #5	`	
		(b) $\frac{g'f'' - f'g''}{(g')^3}$			(d) None of these
80. Let	$f(x) = \begin{bmatrix} x+1 & \vdots \\ x-1 & \vdots \end{bmatrix}$	x < 0 $x \ge 0$ and $g(x) = \begin{bmatrix} x+1\\ (x-1) \end{bmatrix}$; 2 ;	x < 0 $x \ge 0$ then	
the	number of points	where $g(f(x))$ is not diffe	erenti	able.	
	0	(b) 1	(c)		(d) None of these
81. Let	$f(x) = [\sin x] + [\cos x]$	os x], $x \in [0, 2\pi]$, where [] der	otes the greatest	integer function, total
nu	mber of points whe	ere $f(x)$ is non differentiate	ible is	equal to :	
(a)	2	(b) 3	(c)	4	(d) 5
82. Let	$t f(x) = \cos x, g(x)$	$= \begin{cases} \min \{ f(t) : 0 \le t \le x \} \\ (\sin x) - 1 \end{cases}$, x	$\in [0, \pi]$ $x > \pi$	
Th					
	g(x) is discontinu	AND CONTRACTOR OF THE CONTRACT		g(x) is continuo	CLESTONES, DAY 6880
(c)	g(x) is differentiate	able at $x = \pi$			iable for $x \in [0, \infty)$
83. If	$f(x)=(4+x)^n, n\in$	N and $f^{r}(0)$ represents t	the r	derivative of $f(x)$	x) at $x = 0$, then the value
of	$\sum_{r=0}^{\infty} \frac{f^r(0)}{r!}$ is equal to	o:	*		·
(a)) 2 ⁿ	(b) 3^n	(c)	. 5 ⁿ	(d) 4^n
	x	v >1			
84. Le	$t f(x) = \begin{cases} \frac{1+ x }{1- x }, \\ \frac{x}{1- x } \end{cases}$	(b) 3^n $ x \ge 1$, then domain o $ x < 1$ (b) $(-\infty, \infty) - \{-1, 0, 1\}$	f f'(x	r) is :	
(a)) (-∞,∞)	(b) $(-\infty, \infty) - \{-1, 0, 1\}$	(c)	$(-\infty,\infty)-\{-1,1\}$	(d) $(-\infty,\infty)-\{0\}$
	4			× ×	
1,					

86. The number of points at which the function $f(x) = (x-|x|)^2(1-x+|x|)^2$ is not differentiable in the interval (-3, 4) is:

- (a) Zero (b) One (c) Two (d) Three **87.** If $f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 \tan^{-1} x}}$; then f'(0) is equal to :
- (a) 4 (b) 3 (c) 2 (d) 1

 88. If $f(x) = \begin{bmatrix} e^{x-1} & 0 \le x \le 1 \\ x+1-\{x\} & 1 < x < 3 \end{bmatrix}$ and $g(x) = x^2 ax + b$ such that f(x)g(x) is continuous in [0, 3) then the ordered pair (a, b) is (where $\{\cdot\}$ denotes fractional part function):
 - (a) (2, 3) (b) (1, 2) (c) (3, 2) (d) (2, 2)

89. Use the following table and the fact that f(x) is invertible and differentiable everywhere to find $f^{-1}(3)$:

$$x$$
 $f(x)$ $f'(x)$
3 1 7
6 2 10
9 3 5
0 (b) $\frac{1}{5}$ (c) $\frac{1}{10}$ (d) $\frac{1}{7}$

90. Let $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

Such that f(x) is continuous at x = 0; f'(0) is real and finite; and $\lim_{x \to 0} f'(x)$ does not exist. This holds true for which of the following values of n?

- (a) 0
- (b) 1
- (c) 2
- (d) 3

1					No. 1			A	nsv	ver	s								>
1.	(ā)	2.	(d)	3.	(a)	4.	(b)	5.	(c)	6.	(a)	7.	(c)	8.	(c)	9.	(a)	10.	(a)
11.	(a)	12.	(b)	13.	(d)	14.	(c)	15.	(ъ)	16.	(c)	17.	(c)	18.	(ъ)	19.	(c)	20.	(d
21.	(a)	22.	(c)	23.	(b)	24.	(c)	25.	(c)	26.	(c)	27.	(a)	28.	(ъ)	29.	(d)	30.	(c
31.	(d)	32.	(a)	33.	(c)	34.	(a)	35.	(c)	36.	(c)	37.	(c)	38.	(ъ)	39.	(b)	40.	(d
41.	(c)	42.	(ъ)	43.	(c)	44.	(b)	45.	(a)	46.	(a)	47.	(c)	48.	(a)	49.	(c)	50.	(d
51.	(c)	52.	(c)	53.	(c)	54.	(c)	55.	(a)	56.	(c)	57.	(a)	58.	(c)	59.	(c)	60.	(d
61.	(b)	62.	(ъ)	63.	(a)	64.	(c)	65.	(c)	66.	(c)	67.	(c)	68.	(c)	69.	(ъ)	70.	(d
71.	(d)	72.	(d)	73.	(ъ)	74.	(d)	75.	(a)	76.	(c)	77.	(d)	78.	(a)	79.	(b)	80.	(c
81.	(d)	82.	(ъ)	83.	(c)	84.	(c)	85.	(a)	86.	(a)	87.	(d)	88.	(c)	89.	(b)	90.	(c

Exercise-2: One or More than One Answer is/are Correct

- 1. If $f(x) = \tan^{-1} (\operatorname{sgn}(x^2 \lambda x + 1))$ has exactly one point of discontinuity, then the value of $\lambda \operatorname{can}$ be:
 - (a) 1
- (b) -1
- (c) 2
- (d) -2

2.
$$f(x) = \begin{cases} 2(x+1) & ; & x \le -1 \\ \sqrt{1-x^2} & ; & -1 < x < 1, \text{ then } : \\ |||x|-1|-1| & ; & x \ge 1 \end{cases}$$

- (a) f(x) is non-differentiable at exactly three points
- (b) f(x) is continuous in $(-\infty, 1]$
- (c) f(x) is differentiable in $(-\infty, -1)$
- (d) f(x) is finite type of discontinuity at x = 1, but continuous at x = -1

3. Let
$$f(x) = \begin{bmatrix} x(3e^{1/x} + 4) \\ 2 - e^{1/x} \\ 0 \end{bmatrix}$$
; $x \neq 0$ $x \neq \frac{1}{\ln 2}$

which of the following statement(s) is/are correct?

- (a) f(x) is continuous at x = 0
- (b) f(x) is non-derivable at x = 0

(c) $f'(0^+) = -3$

- (d) $f'(0^-)$ does not exist
- **4.** Let $|f(x)| \le \sin^2 x$, $\forall x \in R$, then
 - (a) f(x) is continuous at x = 0
 - (b) f(x) is differentiable at x = 0
 - (c) f(x) is continuous but not differentiable at x = 0
 - (d) f(0) = 0

5. Let
$$f(x) = \begin{bmatrix} \frac{a(1-x\sin x) + b\cos x + 5}{x^2} & ; & x < 0 \\ 3 & ; & x = 0 \\ \left(1 + \left(\frac{cx + dx^3}{x^2}\right)\right)^{\frac{1}{x}} & ; & x > 0 \end{bmatrix}$$

If f is continuous at x = 0 then correct statement(s) is/are:

(a) a+c=-1

(b) b+c=-4

(c) a+b=-5

- (d) c + d = an irrational number
- **6.** If f(x) = ||x| 2| + p| have more than 3 points of non-derivability then the value of p can be :
 - (a) 0

(b) -1

(c) -2

(d) 2

- 7. Identify the options having correct statement:
 - (a) $f(x) = \sqrt[3]{x^2|x|} 1 |x|$ is no where non-differentiable
 - (b) $\lim_{x\to\infty} ((x+5)\tan^{-1}(x+1)) ((x+1)\tan^{-1}(x+1)) = 2\pi$
 - (c) $f(x) = \sin(\ln(x + \sqrt{x^2 + 1}))$ is an odd function
 - (d) $f(x) = \frac{4-x^2}{4x-x^3}$ is discontinuous at exactly one point
- **8.** A twice differentiable function f(x) is defined for all real numbers and satisfies the following conditions:

f(0) = 2; f'(0) = -5 and f''(0) = 3.

The function g(x) is defined by $g(x) = e^{ax} + f(x) \ \forall x \in \mathbb{R}$, where 'a' is any constant. If g'(0) + g''(0) = 0 then 'a' can be equal to:

- (a) 1
- (b) −1
- (c) 2
- (d) -2

- **9.** If $f(x) = |x| \sin x$, then f is :
 - (a) differentiable everywhere
- (b) not differentiable at $x = n \pi$, $n \in I$
- (c) not differentiable at x = 0
- (d) continuous at x = 0
- **10.** Let [] denotes the greatest integer function and $f(x) = [\tan^2 x]$, then
 - (a) $\lim_{x\to 0} f(x)$ does not exist
- (b) f(x) is continuous at x = 0
- (c) f(x) is not differentiable at x = 0
- (d) f'(0) = 0
- **11.** Let f be a differentiable function satisfying $f'(x) = f'(-x) \ \forall \ x \in R$. Then
 - (a) If f(1) = f(2), then f(-1) = f(-2)
 - (b) $\frac{1}{2}f(x) + \frac{1}{2}f(y) = f\left(\frac{1}{2}(x+y)\right)$ for all real values of x, y
 - (c) Let f(x) be an even function, then $f(x) = 0 \forall x \in R$
 - (d) $f(x) + f(-x) = 2f(0) \forall x \in R$
- **12.** Let $f: R \to R$ be a function, such that $|f(x)| \le x^{4n}$, $n \in N \ \forall x \in R$ then f(x) is:
 - (a) discontinuous at x = 0
- (b) continuous at x = 0
- (c) non-differentiable at x = 0
- (d) differentiable at x = 0
- **13.** Let f(x) = [x] and g(x) = 0 when x is an integer and $g(x) = x^2$ when x is not an integer ([] is the greatest integer function) then:
 - (a) $\lim_{x\to 1} g(x)$ exists, but g(x) is not continuous at x=1
 - (b) $\lim_{x\to 1} f(x)$ does not exist
 - (c) gof is continuous for all x
 - (d) fog is continuous for all x

14. Let the function
$$f$$
 be defined by $f(x) = \begin{cases} p + qx + x^2, & x < 2 \\ 2px + 3qx^2, & x \ge 2 \end{cases}$. Then:

- (a) f(x) is continuous in R if 3p + 10q = 4
- (b) f(x) is differentiable in R if $p = q = \frac{4}{13}$
- (c) If p = -2, q = 1, then f(x) is continuous in R
- (d) f(x) is differentiable in R if 2p + 11q = 4

15. Let
$$f(x) = |2x - 9| + |2x| + |2x + 9|$$
. Which of the following are true?

- (a) f(x) is not differentiable at $x = \frac{9}{2}$
- (b) f(x) is not differentiable at $x = \frac{-9}{2}$
- (c) f(x) is not differentiable at x = 0
- (d) f(x) is differentiable at $x = \frac{-9}{2}$, 0, $\frac{9}{2}$

16. Let
$$f(x) = \max(x, x^2, x^3)$$
 in $-2 \le x \le 2$. Then:

- (a) f(x) is continuous in $-2 \le x \le 2$
- (b) f(x) is not differentiable at x = 1

(c) $f(-1) + f\left(\frac{3}{2}\right) = \frac{35}{8}$

(d) $f'(-1)f'(\frac{3}{2}) = \frac{-35}{4}$

17. If
$$f(x)$$
 be a differentiable function satisfying $f(y)f\left(\frac{x}{y}\right) = f(x) \ \forall \ x, y \in R, \ y \neq 0 \ \text{and} \ f(1) \neq 0$,

$$f'(1) = 3$$
, then:

- (a) sgn(f(x)) is non-differentiable at exactly one point
- (b) $\lim_{x\to 0} \frac{x^2(\cos x 1)}{f(x)} = 0$
- (c) f(x) = x has 3 solutions
- (d) $f(f(x)) f^3(x) = 0$ has infinitely many solutions

18. Let
$$f(x) = (x^2 - 3x + 2)(x^2 + 3x + 2)$$
 and α, β, γ satisfy $\alpha < \beta < \gamma$ are the roots of $f'(x) = 0$ then which of the following is/are correct ([·] denotes greatest integer function)?

(a) $[\alpha] = -2$

(b) $[\beta] = -1$

(c) $[\beta] = 0$

(d) $\lceil \alpha \rceil = 1$

19. Let the function
$$f$$
 be defined by $f(x) = \begin{cases} p + qx + x^2, & x < 2 \\ 2px + 3qx^2, & x \ge 2 \end{cases}$. Then:

- (a) f(x) is continuous in R if 3p + 10q = 4
- (b) f(x) is differentiable in R if $p = q = \frac{4}{13}$
- (c) If p = -2, q = 1, then f(x) is continuous in R
- (d) f(x) is differentiable in R if 2p + 11q = 4

20. If $y = e^{x \sin(x^3)} + (\tan x)^x$ then $\frac{dy}{dx}$ may be equal to:

(a)
$$e^{x \sin(x^3)} [3x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x [\ln \tan x + 2x \csc 2x]$$

(b)
$$e^{x \sin(x^3)} [x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x [\ln \tan x + 2x \csc 2x]$$

(c)
$$e^{x \sin(x^3)} [x^3 \sin(x^3) + \cos(x^3)] + (\tan x)^x [\ln \tan x + 2 \csc 2x]$$

(d)
$$e^{x \sin(x^3)} [3x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x \left[\ln \tan x + \frac{x \sec^2 x}{\tan x} \right]$$

21. Let $f(x) = x + (1-x)x^2 + (1-x)(1-x^2)x^3 + \dots + (1-x)(1-x^2)\dots + (1-x^{n-1})x^n$; $(n \ge 4)$ then:

(a)
$$f(x) = -\prod_{r=1}^{n} (1 - x^r)$$

(b)
$$f(x) = 1 - \prod_{r=1}^{n} (1 - x^r)$$

(c)
$$f'(x) = (1 - f(x)) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1 - x^r)} \right)$$

(d)
$$f'(x) = f(x) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1-x^r)} \right)$$

then:
(a)
$$f(x) = -\prod_{r=1}^{n} (1 - x^{r})$$
 (b) $f(x) = 1 - \prod_{r=1}^{n} (1 - x^{r})$
(c) $f'(x) = (1 - f(x)) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1 - x^{r})} \right)$ (d) $f'(x) = f(x) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1 - x^{r})} \right)$
22. Let $f(x) = \begin{bmatrix} x^{2} + a & 0 \le x < 1 \\ 2x + b & 1 \le x \le 2 \end{bmatrix}$ and $g(x) = \begin{bmatrix} 3x + b & 0 \le x < 1 \\ x^{3} & 1 \le x \le 2 \end{bmatrix}$
If derivative of $f(x)$ weth $g(x)$ at $x = 1$ exists and is equal to λ , then which of the form

If derivative of f(x) w.r.t. g(x) at x = 1 exists and is equal to λ , then which of the following is/are correct?

(a)
$$a + b = -3$$

(b)
$$a - b = 1$$

(c)
$$\frac{ab}{\lambda} = 3$$

(a)
$$a+b=-3$$
 (b) $a-b=1$ (c) $\frac{ab}{\lambda}=3$ (d) $\frac{-b}{\lambda}=3$

23. If
$$f(x) = \begin{bmatrix} \frac{\sin(x^2)\pi}{x^2 - 3x + 8} + ax^3 + b ; 0 \le x \le 1 \\ x^2 - 3x + 8 \end{bmatrix}$$
 is differentiable in [0, 2] then :
$$2\cos \pi x + \tan^{-1} x ; 1 < x \le 2$$

([·] denotes greatest integer function)

(a)
$$a = \frac{1}{3}$$

(b)
$$a = \frac{1}{6}$$

(a)
$$a = \frac{1}{3}$$
 (b) $a = \frac{1}{6}$ (c) $b = \frac{\pi}{4} - \frac{13}{6}$ (d) $b = \frac{\pi}{4} - \frac{7}{3}$

(d)
$$b = \frac{\pi}{4} - \frac{7}{3}$$

24. If $f(x) = \begin{cases} 1 + x & 0 \le x \le 2 \\ 3 - x & 2 < x \le 3 \end{cases}$, then f(f(x)) is not differentiable at:

(a)
$$x = 1$$

(b)
$$x = 2$$

(c)
$$x = \frac{5}{2}$$
 (d) $x = 3$

$$(d) x = 3$$

25. Let f(x) = (x+1)(x+2)(x+3)....(x+100) and $g(x) = f(x)f''(x) - (f'(x))^2$. Let n be the number of real roots of g(x) = 0, then:

(a)
$$n < 2$$

(b)
$$n > 2$$

(c)
$$n < 100$$

(d)
$$n > 100$$

26. If
$$f(x) = \begin{cases} |x| - 3, & x < 1 \\ |x - 2| + a, & x \ge 1 \end{cases}$$
, $g(x) = \begin{cases} 2 - |x|, & x < 2 \\ sgn(x) - b, & x \ge 2 \end{cases}$

If h(x) = f(x) + g(x) is discontinuous at exactly one point, then which of the following are correct?

(a)
$$a = -3, b = 0$$

(a)
$$a = -3, b = 0$$
 (b) $a = -3, b = -1$ (c) $a = 2, b = 1$ (d) $a = 0, b = 1$

(c)
$$a = 2, b = 1$$

(d)
$$a = 0, b = 1$$

27. Let f(x) be a continuous function in [-1, 1] such that

$$f(x) = \begin{bmatrix} \frac{\ln(ax^2 + bx + c)}{x^2} ; -1 \le x < 0 \\ 1 ; x = 0 \\ \frac{\sin(e^{x^2} - 1)}{x^2} ; 0 < x \le 1 \end{bmatrix}$$

Then which of the following is/are correct?

$$(a) \quad a+b+c=0$$

(b)
$$b = a + c$$

(c)
$$c = 1 + b$$

(d)
$$b^2 + c^2 = 1$$

(a) a+b+c=0 (b) b=a+c (c) c=1+b (d) $b^2+c^2=1$ **28.** f(x) is differentiable function satisfying the relationship $f^2(x)+f^2(y)+2(xy-1)=f^2(x+y)$ $\forall x, y \in R$

Also $f(x) > 0 \ \forall \ x \in R$ and $f(\sqrt{2}) = 2$. Then which of the following statement(s) is/are correct about f(x)?

- (a) $[f(3)] = 3([\cdot]]$ denotes greatest integer function)
- (b) $f(\sqrt{7}) = 3$
- (c) f(x) is even
- (d) f'(0) = 0

29. The function
$$f(x) = \left[\sqrt{1 - \sqrt{1 - x^2}} \right]$$
, (where [·] denotes greatest integer function) :

- (a) has domain [-1, 1]
- (b) is discontinuous at two points in its domain
- (c) is discontinuous at x = 0
- (d) is discontinuous at x = 1
- **30.** A function f(x) satisfies the relation :

$$f(x+y) = f(x) + f(y) + xy(x+y) \forall x, y \in R.$$
 If $f'(0) = -1$, then:

- (a) f(x) is a polynomial function
- (b) f(x) is an exponential function
- (c) f(x) is twice differentiable for all $x \in R$
- (d) f'(3) = 8

31. The points of discontinuities of $f(x) = \left[\frac{6x}{\pi}\right] \cos\left[\frac{3x}{\pi}\right]$ in $\left[\frac{\pi}{6}, \pi\right]$ is/are:

(where [·] denotes greatest integer function)

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{2}$$

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{3}$ (c)

32. Let $f(x) = \begin{cases} \frac{x^2}{2} & 0 \le x < 1 \\ 2x^2 - 3x + \frac{3}{2} & 1 \le x \le 2 \end{cases}$, then in $[0, 2]$:

- (a) f(x), f'(x) are continuous
- (b) f'(x) is continuous, f''(x) is not continuous
- (c) f''(x) is continuous
- (d) f''(x) is non differentiable

33. If
$$x = \phi(t)$$
, $y = \psi(t)$, then $\frac{d^2y}{dx^2} =$

(a)
$$\frac{\phi'\psi''-\psi'\phi}{(\phi')^2}$$

(b)
$$\frac{\phi'\psi'' - \psi'\phi'}{(\phi')^3}$$

(c)
$$\frac{\psi''}{\phi'} - \frac{\psi'\phi''}{(\phi')^2}$$

(a)
$$\frac{\phi'\psi'' - \psi'\phi''}{(\phi')^2}$$
 (b) $\frac{\phi'\psi'' - \psi'\phi''}{(\phi')^3}$ (c) $\frac{\psi''}{\phi'} - \frac{\psi'\phi''}{(\phi')^2}$ (d) $\frac{\psi''}{(\phi')^2} - \frac{\psi'\phi''}{(\phi')^3}$

34.
$$f(x) = [x]$$
 and $g(x) = \begin{cases} 0 & \text{, } x \in I \\ x^2 & \text{, } x \notin I \end{cases}$ where [:] denotes the greatest integer function. Then

- (a) gof is continuous for all x
- (b) gof is not continuous for all x
- (c) fog is continuous everywhere
- (d) fog is not continuous everywhere

35. Let $f:R^+ \to R$ defined as $f(x) = e^x + \ln x$ and $g = f^{-1}$ then correct statement(s) is/are:

(a)
$$g''(e) = \frac{1-e}{(1+e)^3}$$
 (b) $g''(e) = \frac{e-1}{(1+e)^3}$ (c) $g'(e) = e+1$ (d) $g'(e) = \frac{1}{e+1}$

(c)
$$g'(e) = e + 1$$

(d)
$$g'(e) = \frac{1}{e+1}$$

36. Let
$$f(x) = \begin{cases} \frac{3x - x^2}{2} & ; & x < 2 \\ [x - 1] & ; & 2 \le x < 3; \text{ then which of the following hold(s) good?} \\ x^2 - 8x + 17 & ; & x \ge 3 \end{cases}$$

([.] denotes greatest integer function)

(a)
$$\lim_{x\to 2} f(x) = 1$$

(b)
$$f(x)$$
 is differentiable at $x = 2$

(c)
$$f(x)$$
 is continuous at $x = 2$

(d)
$$f(x)$$
 is discontinuus at $x = 3$

4	Answers										
1.	(c, d)	2.	(a, c, d)	3.	(a, b, c)	4.	(a, b, d)	5.	(a, b, c, d)	6.	(b, c)
7.	(a, b, c)	8.	(a, d)	9.	(a, d)	10.	(b, d)	11.	(a, d)	12.	(b, d)
13.	(a, b, c)	14.	(a, b, c)	15.	(a, b, c)	16.	(a, b, c)	17.	(a, b, c, d)	18.	(a, c)
19.	(a, b, c)	20.	(a, d)	21.	(b, c)	22.	(a, b, c, d)	23.	(b, c)	24.	(a, b)
25.	(a, c)	26.	(a, b, c, d)	27.	(c, d)	28.	(a, b, c, d)	29.	(a, b, d)	30.	(a, c, d)
31.	(b, c)	32.	(a, b, d)	33.	(b, d)	34.	(a)	35.	(a, d)	36.	(a, c, d)

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $f(x) = \lim_{n \to \infty} n^2 \tan \left(\ln \left(\sec \frac{x}{n} \right) \right)$ and $g(x) = \min (f(x), \{x\})$

(where {·} denotes fractional part function)

- **1.** Left hand derivative of $\phi(x) = e^{\sqrt{2f(x)}}$ at x = 0 is :
- (c) -1
- (d) Does not exist
- **2.** Number of points in $x \in [-1, 2]$ at which g(x) is discontinuous :
- (b) 1
- (d) 3

Paragraph for Question Nos. 3 to 4

Let f(x) and g(x) be two differentiable functions, defined as:

$$f(x) = x^2 + xg'(1) + g''(2)$$
 and $g(x) = f(1)x^2 + xf'(x) + f''(x)$.

- **3.** The value of f(1) + g(-1) is :
 - (a) 0
- (c) 2
- (d) 3
- **4.** The number of integers in the domain of the function $F(x) = \sqrt{-\frac{f(x)}{g(x)}} + \sqrt{3-x}$ is :
 - (a) 0
- (b) 1
- (c) 2
- (d) Infinite

Paragraph for Question Nos. 5 to 6

Define: $f(x) = |x^2 - 4x + 3| \ln x + 2(x-2)^{1/3}, x > 0$

$$h(x) = \begin{cases} x-1 &, & x \in Q \\ x^2 - x - 2 &, & x \notin Q \end{cases}$$

- **5.** f(x) is non-differentiable at points and the sum of corresponding x value(s) is
 - (a) 3, 6
- (b) 2, 3
- (c) 2, 4
- (d) 2, 5

- **6.** h(x) is discontinuous at $x = \dots$
 - (a) $1 + \sqrt{2}$
- (b) $\tan \frac{3\pi}{8}$
- (c) $\tan \frac{7\pi}{8}$ (d) $\sqrt{2} 1$

Paragraph for Question Nos. 7 to 8

Consider a function defined in [-2, 2]

fraction defined in [-2, 2]

$$f(x) = \begin{cases} \{x\} & -2 \le x < -1 \\ |\operatorname{sgn} x| & -1 \le x \le 1 \\ |-x\} & 1 < x \le 2 \end{cases}$$

where {·} denotes the fractional part function.

7. The total number of points of discontinuity	y of $f(x)$ for $x \in [-2, 2]$ is:
--	-------------------------------------

- (a) 0
- (b) 1
- (d) 4
- **8.** The number of points for $x \in [-2, 2]$ where f(x) is non-differentiable is :
 - (a) 0
- (b) 1
- (c) 2
- (d) 3

Paragraph for Question Nos. 9 to 10

Consider a function f(x) in $[0, 2\pi]$ defined as:

$$f(x) = \begin{bmatrix} [\sin x] + [\cos x] & ; & 0 \le x \le \pi \\ [\sin x] - [\cos x] & ; & \pi < x \le 2\pi \end{bmatrix}$$

where [-] denotes greatest integer function then

- **9.** Number of points where f(x) is non-derivable :
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

- **10.** $\lim_{x \to \infty} f(x)$ equals $x \rightarrow \left(\frac{3\pi}{2}\right)$
 - (a) 0
- (b) 1
- (c) -1
- (d) 2

Paragraph for Question Nos. 11 to 13

Let $f(x) = \begin{cases} x[x] & 0 \le x < 2 \\ (x-1)[x] & 2 \le x \le 3 \end{cases}$ where [x] = greatest integer less than or equal to x, then:

- **11.** The number of values of x for $x \in [0, 3]$ where f(x) is discontinuous is :
- (b) 1
- (d) 3
- **12.** The number of values of x for $x \in [0, 3]$ where f(x) is non-differentiable is :
- (b) 1
- (d) 3
- **13.** The number of integers in the range of y = f(x) is:
 - (a) 3
- (b) 4
- (d) 6

Paragraph for Question Nos. 14 to 16

Let $f: R \to R$ be a continuous and differentiable function such that $f(x+y) = f(x) \cdot f(y)$ $\forall x, y, f(x) \neq 0 \text{ and } f(0) = 1 \text{ and } f'(0) = 2.$

Let $g(xy) = g(x) \cdot g(y) \forall x, y \text{ and } g'(1) = 2; g(1) \neq 0$

14. Identify	the correct	option:
--------------	-------------	---------

(a)
$$f(2) = e^4$$

(b)
$$f(2) = 2e^2$$

(c)
$$f(1) < 4$$

(d)
$$f(3) > 729$$

15. Identify the correct option:

(a)
$$g(2) = 2$$

(b)
$$g(3) = 3$$

(c)
$$g(3) = 9$$

(d)
$$g(3) = 6$$

16. The number of values of x, where f(x) = g(x):

Paragraph for Question Nos. 17 to 18

Let
$$f(x) = \frac{\cos^2 x}{1 + \cos x + \cos^2 x}$$
 and $g(x) = \lambda \tan x + (1 - \lambda) \sin x - x$, where $\lambda \in R$ and $x \in [0, \pi/2)$.

17.
$$g'(x)$$
 equals

(a)
$$\frac{(1-\cos x)(f(x)-\lambda)}{\cos x}$$

(b)
$$\frac{(1-\cos x)(\lambda-f(x))}{2}$$

(a)
$$\frac{(1-\cos x)(f(x)-\lambda)}{\cos x}$$
(c)
$$\frac{(1-\cos x)(\lambda-f(x))}{f(x)}$$

(b)
$$\frac{(1-\cos x)(\lambda - f(x))}{\cos x}$$
(d)
$$\frac{(1-\cos x)(\lambda - f(x))}{(f(x))^2}$$

18. The exhaustive set of values of ' λ ' such that $g'(x) \ge 0$ for any $x \in [0, \pi/2)$:

(c)
$$\left[\frac{1}{2},\infty\right]$$
 (d) $\left[\frac{1}{3},\infty\right]$

(d)
$$\left[\frac{1}{3}, \infty\right]$$

Paragraph for Question Nos. 19 to 21

Let
$$f(x) = \lim_{n \to \infty} \frac{x^2 + 2(x+1)^{2n}}{(x+1)^{2n+1} + x^2 + 1}, n \in \mathbb{N}$$
 and $g(x) = \tan\left(\frac{1}{2}\sin^{-1}\left(\frac{2f(x)}{1+f^2(x)}\right)\right)$, then

- **19.** The number of points where g(x) is non-differentiable $\forall x \in R$ is :
 - (a) 1
- (c) 3
- (d) 4

20.
$$\lim_{x \to -3} \frac{(x^2 + 4x + 3)}{\sin(x + 3)g(x)}$$
 is equal to :

- (c) 4
- (d) Non-existent

21.
$$\lim_{x\to 0^-} \left\{ \frac{f(x)}{\tan^2 x} \right\} + \left| \lim_{x\to -2^-} f(x) \right| + \lim_{x\to -2^+} (5f(x))$$
 is equal to

(where {-} denotes fraction part function)

- (a) 7
- (b) 8
- (c) 12
- (d) Non-existent

Paragraph for Question Nos. 22 to 24

Let f and g be two differentiable functions such that :

$$f(x) = g'(1)\sin x + (g''(2) - 1)x$$
$$g(x) = x^2 - f'\left(\frac{\pi}{2}\right)x + f''\left(-\frac{\pi}{2}\right)$$

- **22.** The number of solution(s) of the equation f(x) = g(x) is/are:
 - (a) 1
- (b) 2
- (c) 3
- (d) infinite
- **23.** If $\int \frac{g(\cos x)}{f(x) x} dx = \cos x + \ln(h(x)) + C$ where C is constant and $h\left(\frac{\pi}{2}\right) = 1$ then $\left| h\left(\frac{2\pi}{3}\right) \right|$ is:
 - (a) $3\sqrt{2}$
- (b) 2√3
- (c) √3
- (d) $\frac{1}{\sqrt{3}}$

- **24.** If $\phi(x) = f^{-1}(x)$ then $\phi'\left(\frac{\pi}{2} + 1\right)$ equals to :
 - (a) $\frac{\pi}{2} + 1$
- (b) $\frac{\pi}{2}$
- (c) 1
- (d) 0

Paragraph for Question Nos. 25 to 26

Suppose a function f(x) satisfies the following conditions

$$f(x+y) = \frac{f(x)+f(y)}{1+f(x) f(y)}, \forall x, y \in R \text{ and } f'(0) = 1$$

Also
$$-1 < f(x) < 1, \forall x \in R$$

- **25.** f(x) increases in the complete interval:
 - (a) $(-\infty, -1) \cup (-1, 0) \cup (0, 1) \cup (1, \infty)$
- (b) $(-\infty, \infty)$

(c) $(-\infty, -1) \cup (-1, 0)$

- (d) $(0, 1) \cup (1, \infty)$
- **26.** The value of the limit $lt (f(x))^x$ is:

x→∞

- (a) 0
- (b) 1
- (c) e
- (d) e^2

Paragraph for Question Nos. 27 to 28

Let f(x) be a polynomial satisfying $\lim_{x\to\infty} \frac{x^4 f(x)}{x^8 + 1} = 3$

$$f(2) = 5, f(3) = 10, f(-1) = 2, f(-6) = 37$$

27. The value of $\lim_{x \to -6} \frac{f(x) - x^2 - 1}{3(x + 6)}$ equals to :

(c)
$$\frac{6}{2}$$

(d)
$$\frac{-6}{2}$$

28. The number of points of discontinuity of $g(x) = \frac{1}{x^2 + 1 - f(x)} in \left[\frac{-15}{2}, \frac{5}{2} \right]$ equals :

Paragraph for Question Nos. 29 to 30

Consider $f(x) = x^{\ln x}$ and $g(x) = e^2x$. Let α and β be two values of x satisfying f(x) = g(x) $(\alpha < \beta)$

29. If $\lim_{x\to\beta} \frac{f(x)-c\beta}{g(x)-\beta^2} = l$ then the value of c-l equals to :

(a)
$$4-e^2$$

(b)
$$e^2 - 4$$

(d)
$$e - 4$$

(a) $4-e^2$ (b) e^2-4 (c) 4-e **30.** If $h(x) = \frac{f(x)}{g(x)}$ then $h'(\alpha)$ equals to :

Paragraph for Question Nos. 31 to 32

Let
$$f_n(x) + f_n(y) = \frac{x^n + y^n}{x^n y^n} \forall x, y \in R - \{0\}$$
 where $n \in N$ and

$$g(x) = \max_{x} \left\{ f_2(x), f_3(x), \frac{1}{2} \right\} \ \forall \ x \in \mathbb{R} - \{0\}$$

31. The minimum value of $\sum_{k=1}^{\infty} f_{2k}(\csc \theta) + \sum_{k=1}^{\infty} f_{2k}(\sec \theta)$, where $\theta \neq \frac{k\pi}{2}$; $k \in I$ is:

32. The number of values of x for which g(x) is non-differentiable $(x \in R - \{0\})$:

Answers 2. (a) 3. (d) 4. (c) 5. (d) 6. (d) 7. (b) 8. (d) (d) **13.** (c) 14. (a) 15. (c) **16.** (b) 17. 12. (c) **18.** (d) 11. (c) 19. (d) 20. (b) 23. (b) 24. (c) 25. (b) 26. (b) 27. (d) (b) 28. (b) (a) 29. (b) 30. (d) (b)

Exercise-4: Matching Type Problems

1.

	Column-i		Column-II
(A)	If $\int_{0}^{\pi} \frac{\log \sin x}{\cos^2 x} dx = -K$ then the value of $\frac{3k}{\pi}$ is greater than	(P)	0
(B)	If $e^{x+y} + e^{y-x} = 1$ and $y'' - (y')^2 + K = 0$, then K is equal to	(Q)	1
	If $f(x) = x \ln x$ then $2(f^{-1})'(\ln 4)$ is more than	(R)	2
(D)	$\lim_{x \to \infty} (x \ln x)^{\frac{1}{x^2 + 1}} \text{ is less than}$	(S)	4
	and the second of the second o	(T)	5

2. Let
$$f(x) = \begin{cases} [x] & , & -2 \le x < 0 \\ |x| & , & 0 \le x \le 2 \end{cases}$$

(where [·] denotes the greatest integer function) $g(x) = \sec x, x \in R - (2n+1)\frac{\pi}{2}, n \in I$

Match the following statements in column I with their values in column II in the interval

/	Column-I		Column-II
(A)	Abscissa of points where limit of $fog(x)$ exist is/are	(P)	-1
(B)	Abscissa of points in domain of $gof(x)$, where limit of $gof(x)$ does not exist is/are	(Q)	π
(C)	Abscissa of points of discontinuity of $fog(x)$ is/are	(R)	$\frac{5\pi}{6}$
(D)	Abscissa of points of differentiability of $fog(x)$ is/are	(S)	-π
		(T)	0

3. Let a function $f(x) = [x]\{x\} - |x|$ where [.], {.} are greatest integer and fractional part respectively then match the following List-I with List-II.

	Column-I		Column-II
	f(x) is continuous at x equal to	(P)	3
(B)	$\left \frac{4}{3} \right \int_{2}^{3} f(x) dx$ is equal to	(Q)	1

(C)	If $g(x) = x - 1$ and if $f(x) = g(x)$ where $x \in (-3, \infty)$, then number of solutions	(R)	4
(D)	If $l = \lim_{x \to 4^+} f(x)$, then $-l$ is equal to	(S)	2

4.

1	Column-I		Column-II
(A)	$\lim_{x \to \infty} \left(\frac{x^2 + 2x - 1}{2x^2 - 3x - 2} \right)^{\frac{2x + 1}{2x - 1}} =$	(P)	$\frac{1}{2}$
	$\lim_{x \to 0} \frac{\log_{\sec x/2} \cos x}{\log_{\sec x} \cos \frac{x}{2}} =$	(Q)	2
(C)	Let $f(x) = \max(\cos x, x, 2x - 1)$ where $x \ge 0$ then number of points of non-differentiability of $f(x)$ is		5 / 10 / 6
(D)	If $f(x) = [2 + 3\sin x]$, $0 < x < \pi$ then number of points at which the function is discontinuous, is	(S)	16

5. The function
$$f(x) = ax(x-1) + b$$
 $x < 1$
= $x - 1$ $1 \le x \le 3$
= $px^2 + qx + 2$ $x > 3$

if

- (i) f(x) is continuous for all x
- (ii) f'(1) does not exist
- (iii) f'(x) is continuous at x = 3, then

1	Column-l		Column-II
(A)	a cannot has value	(P)	1/3
(B)	b has value	(Q)	0
(C)	p has value	(R)	-1
(D)	q has value	(S)	1

Answers

- 1. $A \rightarrow P$, Q, R; $B \rightarrow Q$; $C \rightarrow P$, Q; $D \rightarrow R$, S, T
- 2. $A \rightarrow P$, Q, R, S, T; $B \rightarrow P$, T; $C \rightarrow Q$, S; $D \rightarrow P$, R, T
- 3. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$
- 4. $A \rightarrow P$; $B \rightarrow S$; $C \rightarrow Q$; $D \rightarrow R$
- 5. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$

Exercise-5: Subjective Type Problems

1. Let $f(x) = \begin{cases} ax(x-1) + b & ; & x < 1 \\ x + 2 & ; & 1 \le x \le 3 \text{ is continuous } \forall x \in R \text{ except } x = 1 \text{ but } |f(x)| \text{ is } \\ px^2 + qx + 2 & ; & x > 3 \end{cases}$

differentiable everywhere and f'(x) is continuous at x = 3 and |a + p + b + q| = k, then k = 1

2. If
$$y = \sin(8\sin^{-1} x)$$
 then $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = -ky$, where $k = -ky$

3. If
$$y^2 = 4ax$$
, then $\frac{d^2y}{dx^2} = \frac{ka^2}{y^3}$, where $k^2 = \frac{k^2}{y^3}$

4. The number of values of $x, x \in [-2, 3]$ where $f(x) = [x^2] \sin(\pi x)$ is discontinuous is (where [] denotes greatest integer function)

5. If f(x) is continuous and differentiable in [-3, 9] and $f'(x) \in [-2, 8] \ \forall \ x \in (-3, 9)$. Let N be the number of divisors of the greatest possible value of f(9) - f(-3), then find the sum of digits of N.

6. If
$$f(x) = \begin{bmatrix} \cos x^3 & ; & x < 0 \\ \sin x^3 - |x^3 - 1| & ; & x \ge 0 \end{bmatrix}$$

then find the number of points where g(x) = f(|x|) is non-differentiable.

7. Let $f(x) = x^2 + ax + 3$ and g(x) = x + b, where $F(x) = \lim_{n \to \infty} \frac{f(x) + (x^2)^n g(x)}{1 + (x^2)^n}$. If F(x) is continuous at x = 1 and x = -1 then find the value of $(a^2 + b^2)$.

8. Let
$$f(x) = \begin{cases} 2-x & , & -3 \le x \le 0 \\ x-2 & , & 0 < x < 4 \end{cases}$$

Then $f^{-1}(x)$ is discontinuous at x =

9. If $f(x) + 2f(1-x) = x^2 + 2 \forall x \in R$ and f(x) is a differentiable function, then the value of f'(8) is

10. Let f(x) = signum(x) and $g(x) = x(x^2 - 10x + 21)$, then the number of points of discontinuity of f[g(x)] is

11. If
$$\frac{d^2}{dx^2} \left(\frac{\sin^4 x + \sin^2 x + 1}{\sin^2 x + \sin x + 1} \right) = a \sin^2 x + b \sin x + c$$
 then the value of $b + c - a$ is

12. If $f(x) = a\cos(\pi x) + b$, $f'\left(\frac{1}{2}\right) = \pi$ and $\int_{1/2}^{3/2} f(x) dx = \frac{2}{\pi} + 1$, then find the value of $-\frac{12}{\pi} \left(\frac{\sin^{-1} a}{3} + \cos^{-1} b\right)$.

13. Let
$$\alpha(x) = f(x) - f(2x)$$
 and $\beta(x) = f(x) - f(4x)$ and $\alpha'(1) = 5 \alpha'(2) = 7$ then find the value of $\beta'(1) - 10$

14. Let
$$f(x) = -4 \cdot e^{\frac{1-x}{2}} + \frac{x^3}{3} + \frac{x^2}{2} + x + 1$$
 and g be inverse function of f and $h(x) = \frac{a + bx^{3/2}}{x^{5/4}}$, $h'(5) = 0$, then $\frac{a^2}{5b^2g'(\frac{-7}{6})} = \frac{a^2}{5b^2g'(\frac{-7}{6})}$

15. If
$$y = e^{2\sin^{-1}x}$$
 then $\left| \frac{(x^2 - 1)y'' + xy'}{y} \right|$ is equal to

16. Let
$$f$$
 be a continuous function on $[0, \infty)$ such that $\lim_{x \to \infty} \left(f(x) + \int_0^x f(t) dt \right)$ exists. Find $\lim_{x \to \infty} f(x)$.

17. Let
$$f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5}$$
 and let $g(x) = f^{-1}(x)$. Find $g'''(0)$.

18. If
$$f(x) = \begin{bmatrix} \cos x^3 & ; & x < 0 \\ \sin x^3 - |x^3 - 1| & ; & x \ge 0 \end{bmatrix}$$

then find the number of points where g(x) = f(|x|) is non-differentiable.

19. Let $f: R^+ \longrightarrow R$ be a differentiable function satisfying :

$$f(xy) = \frac{f(x)}{y} + \frac{f(y)}{x} \quad \forall x, y \in \mathbb{R}^+ \quad \text{also} \quad f(1) = 0; f'(1) = 1$$

find $\lim_{x\to e} \left[\frac{1}{f(x)} \right]$ (where [·] denotes greatest integer function).

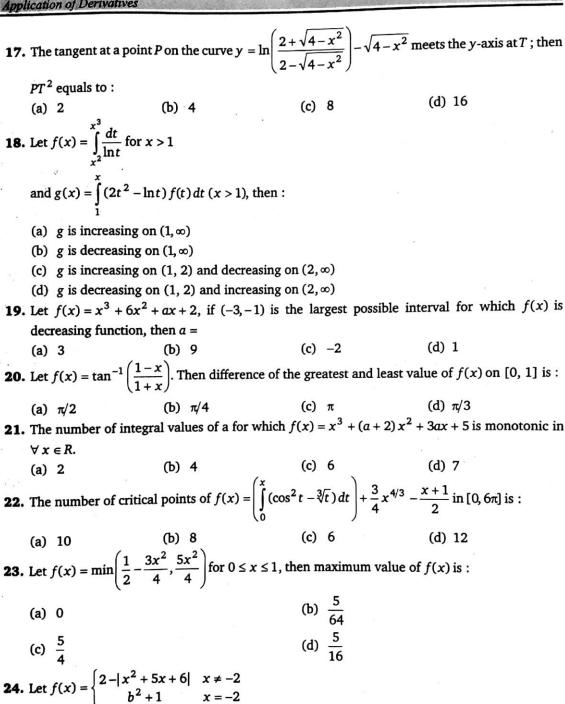
- **20.** For the curve $\sin x + \sin y = 1$ lying in the first quadrant there exists a constant α for which $\lim_{x\to 0} x^{\alpha} \frac{d^2y}{dx^2} = L$ (not zero), then $2\alpha =$
- **21.** Let $f(x) = x \tan^{-1}(x^2) + x^4$. Let $f^k(x)$ denotes k^{th} derivative of f(x) w.r.t. $x, k \in N$. If $f^{2m}(0) \neq 0, m \in N$, then m =

22. If
$$x = \cos \theta$$
 and $y = \sin^3 \theta$, then $\left| \frac{yd^2y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right|$ at $\theta = \frac{\pi}{2}$ is:

23. The value of
$$x, x \in (2, \infty)$$
 where $f(x) = \sqrt{x + \sqrt{8x - 16}} + \sqrt{x - \sqrt{8x - 16}}$ is not differentiable is :

24. The number of non differentiability points of function
$$f(x) = \min\left([x], \{x\}, \left|x - \frac{3}{2}\right|\right)$$
 for $x \in (0, 2)$, where [·] and {·} denote greatest integer function and fractional part function respectively.

	1			7		Ansv	vers	5					
1.	3	2.	64	3.	16	4.	8	5.	3	6.	2	7.	17
8.	2	9.	4	10.	3	11.	7	12.	2	13.	9	14.	5
15.	4	16.	0	17.	1	18.	2	19.	2	20.	3	21.	2
22.	3	23.	4	24.	3								

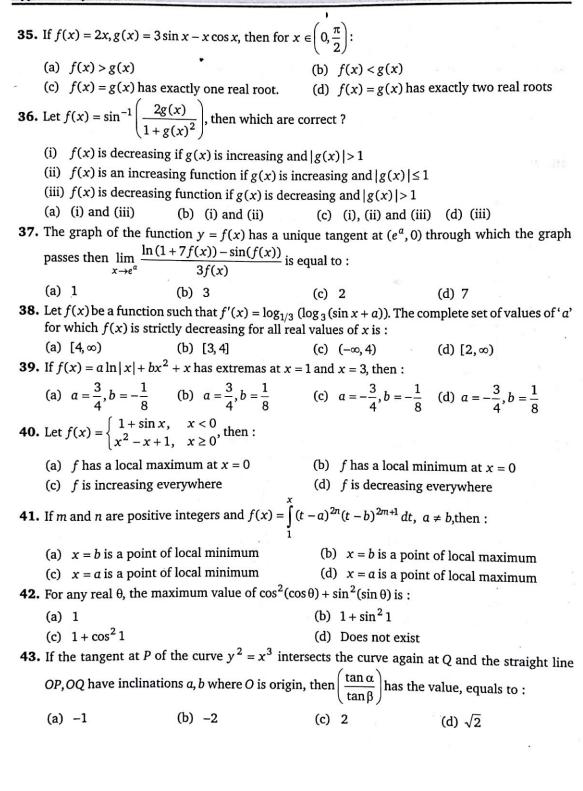

Chapter 4 - Application of Derivatives

APPLICATION OF DERIVATIVES

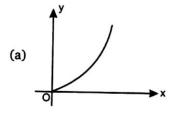
Evereice 1 . Cincle	Chaire Drahlema		
Exercise-1 : Single	e Choice Problems		
1. The difference be $f(x) = 3\sin^4 x - \cos^6 x$	etween the maximum \hat{x} is:	and minimum v	alue of the function
(a) $\frac{3}{2}$	(b) $\frac{5}{2}$	(c) 3	(d) 4
		to the graph is $y = 3x$	fits graph passes through -5, then the function is: $(d) (x+1)^{2}$
3. If the subnormal at ar			
20 20	y = y = 0	3° · x · is of constant	ength then k equals to:
(a) $\frac{1}{2}$	(b) 1	(c) 2	(d) 0
4. If $x^5 - 5qx + 4r$ is divi	sible by $(x-c)^2$ then wh	ich of the following mus	st hold true $\forall q, r, c \in R$?
(a) $q=r$	(b) $q + r = 0$	-	
5. A spherical iron ball 1 at a rate of 50 cm ³ /m	0 cm in radius is coated in . When the thickness o	with a layer of ice of un f ice is 5 cm, then the r	iform thickness that melts ate at which the thickness
of ice decreases, is:			
301	(b) $\frac{1}{18\pi}$ cm/min		
6. If $f(x) = \frac{(x-1)(x-2)}{(x-3)(x-4)}$	$\frac{2}{4}$, then number of local	extremas for $g(x)$, wh	ere $g(x) = f(x)$:
(a) 3	(b) 4	(c) 5	(d) None of these
7. Two straight roads O . $OA = 700 \mathrm{m}$ at a unif	form speed of 20 m/s, 5	Simultaneously, a runr	roaches O from A, where ner starts running from O he car and the runner are
(a) 10 sec		(b) 15 sec	•
(c) 20 sec		(d) 30 sec	

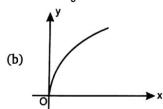
		(- 2.		· · · · 0								
		$f(x) = \begin{cases} a - 3x \\ 4x + 3 \end{cases}$										a, is:
	(a)	$(-\infty, 3)$ $x) = \begin{cases} 3+ z \\ a^2-2+1 \end{cases}$	(b) (-∞,3	3]	(c)	(3,∞)) ·	(d)	[3,	∞)	
0	f(3+ :	x-k	, x	≤ k			l. shom				
,	•)($a^2 - 2 + 3$	(x-k)	$\frac{O}{x}$, x	$> k^{\text{nas min}}$	nımun	i at x =	= K, uien				
	(a)	$a \in R$	Ъ) a <2		(c)	a > 1	2	(d)	1 <	a <2	
10	For		d^2y	ć		1			C -4.	. 1	Lot	the alebal
10	• FOI	$a \in R$ a certain curve	$\frac{dx^2}{dx^2}$	6x – 4 a	na curve na	as ioca	ı mınır	num va	iue 5 at .	x = 1	. Let	nie giobai
	max	ximum and glo	obal mi									
		− m) equals to −2		٠. ٥	*		10		(4)	10		A.
) 2		(c)				-12		
11	. The	tangent to y	$=ax^2+$	$bx + \frac{7}{2}a$	it (1, 2) is p	oaralle	to the	norma	l at the	poin	t (–2,	2) on the
	cur	$ve y = x^2 + 6x$	+ 10. T1	nen the	value of $\frac{a}{2}$ -	<i>b</i> is :						1.0
							•		(4)			
19	(a)	2 <i>a, b</i>) be the poin	D) nt on th) U	0, 2 - , 3	(c)	ormal	to the	(d)	l No o		
12		the axis, then				viiere i	iormai	to the t	curve ma	ike e	quai i	ntercepts
		150				(a)	20		(4)	Non	6 +1	Local
	(a)	U	(0)	3		(c)	3		(a)	NOI	e of ti	nese
13.	The	curve $y = f(x)$) satisfi	es $\frac{d^2y}{2}$ =	= 6x – 4 and	f(x)	has a	local mi	nimum	valu	e 5 wl	nen $x = 1$.
				dx²								,
		f(0) is equal	-	0		(c)	5	,	(d)	Man		· · ·
14	(a)	A be the point	(-,	-	ve $5\alpha^2x^3$	(c) ⊦10α :	$c^2 + r$	+ 2v - 4	(u) 0 (a .	NOI	e or t	nese
17.		is, then the equ										
		n, is :					P			ut /1	meets	the curve
	(a)	$x - \alpha y + 2\alpha =$	0 (b)	$\alpha x + y$	-2 = 0	(c)	2x-y	v + 2 = 0	(d)	x +	2y – 4	1 = 0
15.	The	difference	betwee	n the	greatest	and	the	least	value	of	the	function
	f(x)	$=\cos x + \frac{1}{2}\cos x$	$32x - \frac{1}{3}$	cos 3x								
		_	3				9		70.00	7		
	(a)	5	(D)	$\frac{13}{6}$		(c)	4		(d)	3		
16.	The .	x co-ordinate o	of the po	oint on t	he curve y	$=\sqrt{x}$	which	is closes	st to the	poin	it (2, I	l) is:
	(a)	$\frac{2+\sqrt{3}}{2}$	(b)	$\frac{1+\sqrt{3}}{2}$		(c)	$\frac{-1+4}{2}$	√3	(d)			
	,	2	ζ-,	2		(0)	2		(u)	-		

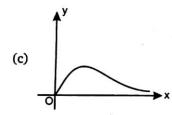
Has relative maximum at x = -2, then complete set of values b can take is:

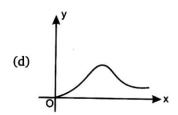

(b) |b| < 1

(a) $|b| \ge 1$


(c) b > 1


(d) b < 1


25	• Let	for the function f	$(x) = \begin{bmatrix} \cos^{-1} x & ; & -1 \le 3 \\ mx + c & ; & 0 < x \end{bmatrix}$	$0 \le 0$;	
	Lag	range's mean valu	e theorem is applicable	in [–:	l, 1] then ordered	pair (m, c) is:
	(a)	$\left(1,-\frac{\pi}{2}\right)$	(b) $\left(1,\frac{\pi}{2}\right)$	(c)	$\left(-1,-\frac{\pi}{2}\right)$	(d) $\left(-1,\frac{\pi}{2}\right)$
26.	Tan lie o	gents are drawn to on :	$y = \cos x$ from origin the	en po	ints of contact of the	hese tangents will always
,	(a)	$\frac{1}{x^2} = \frac{1}{y^2} + 1$	(b) $\frac{1}{x^2} = \frac{1}{y^2} - 2$	(c)	$\frac{1}{y^2} = \frac{1}{x^2} + 1$	(d) $\frac{1}{y^2} = \frac{1}{x^2} - 2$
27.	Leas	st natural number	a for which $x + ax^{-2} > 2$	$\forall x$	∈ (0, ∞) is :	
	(a)		(b) 2	(c)		(d) None of these
28.	Ang	le between the tar	ngents to the curve $y = x$			
		$\frac{\pi}{6}$	(b) $\frac{\pi}{4}$		_	(d) $\frac{\pi}{2}$
29.	Diff	erence between th	ne greatest and least valu	ies of	the function $f(x)$	$= \int_{0}^{x} (\cos^2 t + \cos t + 2) dt$
	in th	ne interval [0, 2π] i	s $K\pi$, then K is equal to :			U
	(a)		(b) 3	(c)	5	(d) None of these
30.	The	range of the func	tion $f(\theta) = \frac{\sin \theta}{\theta} + \frac{\theta}{\tan \theta}$,	θ∈	$(0, \frac{\pi}{2})$ is equal to :	
	(a)	(0,∞)	(b) $\left(\frac{1}{\pi},2\right)$	(c)	(2,∞)	(d) $\left(\frac{2}{\pi}, 2\right)$
31.	Num disti	ber of integers in t nct is :	the range of c so that the ϵ	equat	$ion x^3 - 3x + c = 0$	has all its roots real and
	(a)	2	(b) 3	(c)	4	(d) 5
32 .	Let f	$f(x) = \int e^x (x-1) dx$	(x-2) dx. Then $f(x)$ dec	rease	s in the interval:	
		(2,∞)			(-2, -1)	
	(c)				$(-\infty,1)\cup(2,\infty)$	
33.			$1 y = ax^3 + bx^2 + cx + d$	(a.b.	$c, d \in R$) has only	one critical point in its
	entir	e domain and ac =	= 2, then the value of $ b $	is:	, , , a = 11, mas only	one critical point in its
					$\sqrt{5}$	(d) √6
34.	On tl	the curve $y = \frac{1}{1+x}$	(b) $\sqrt{3}$ $\frac{1}{2}$, the point at which $\frac{dy}{dt}$	$\frac{7}{6}$ is	greatest in the firs	t quadrant is :
		$\left(\frac{1}{2},\frac{4}{5}\right)$			$\left(\frac{1}{\sqrt{2}},\frac{2}{3}\right)$	



- **44.** If x + 4y = 14 is a normal to the curve $y^2 = \alpha x^3 \beta$ at (2, 3), then value of $\alpha + \beta$ is :
 - (a) 9
- (b) -5
- (c) 7
- (d) -7
- **45.** The tangent to the curve $y = e^{kx}$ at a point (0, 1) meets the x-axis at (a, 0) where $a \in [-2, -1]$, then $k \in \mathbb{N}$
 - (a) $\left[-\frac{1}{2},0\right]$
- (b) $\left[-1,-\frac{1}{2}\right]$
- (c) [0,1]
- (d) $\left[\frac{1}{2},1\right]$
- **46.** Which of the following graph represent the function $f(x) = \int_{0}^{\sqrt{x}} e^{-\frac{u^2}{x}} du$, for x > 0 and f(0) = 0?

- **47.** Let f(x) = (x-a)(x-b)(x-c) be a real valued function where a < b < c $(a, b, c \in R)$ such that $f''(\alpha) = 0$. Then if $\alpha \in (c_1, c_2)$, which one of the following is correct?
 - (a) $a < c_1 < b \text{ and } b < c_2 < c$
- (b) $a < c_1, c_2 < b$

(c) $b < c_1, c_2 < c$

- (d) None of these
- **48.** $f(x) = x^6 x 1, x \in [1, 2]$. Consider the following statements:
 - (1) f is increasing on [1, 2]

(2) f has a root in [1, 2]

(3) f is decreasing on [1, 2]

- (4) f has no root in [1, 2]
- Which of the above are correct?
- (a) 1 and 2
- (b) 1 and 4
- (c) 2 and 3
- (d) 3 and 4
- **49.** Which one of the following curves is the orthogonal trajectory of straight lines passing through a fixed point (a, b)?
 - (a) x-a=k(y-b)

(b) (x-a)(y-b) = k

(c) $(x-a)^2 = k(y-b)$

(d) $(x-a)^2 + (y-b)^2 = k$

					/	
50.	The	function $f(x) = \sin x$	$n^3 x - m \sin x$ is defined	on open inter	$\operatorname{val}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and if assur	nes only 1
	maxi	mum value and o	nly 1 minimum value on	this interval.	Then, which one of the	following
		30구시급 - (귀(구)(구)(구)(구)(구)(구)(구)(구)	(h) 20	(-) 2	(d) m < -3	
	(a)	0 < m < 3	(b) $-3 < m < 0$ mbers 1, $2^{1/2}$, $3^{1/3}$, $4^{1/4}$	(c) $m > 3$	(u) III < -3	
51.	The	greatest of the nu	mbers 1, $2^{1/2}$, $3^{1/3}$, $4^{1/4}$, $5^{1/3}$, $6^{1/3}$ at	nd /*/ is:	
	(a)		(b) $3^{1/3}$	(c) $7^{1/7}$	(d) $6^{1/6}$	2.2
52.	Let l	be the line throu	igh (0, 0) and tangent to	the curve y	$= x^3 + x + 16$. Then the	e slope of l
	equa					
	(a)	10	(b) 11	(c) 17	(d) 13	
53.	The	slope of the tange	ent at the point of inflect	ion of $y = x^3$	$-3x^2 + 6x + 2009$ is e	qual to:
	(a)	2	(b) 3	(c) 1	(d) 4	
54.	Let f	be a real valued	function with $(n + 1)$ de	rivatives at ea	ch point of R. For each	pair of real
		bers a , b , $a < b$, s ı			7 7 8 9	
		8	$\int f(b) + f'(b) + \dots +$	$f^{(n)}(b)$,		
		A	$ \ln \left[\frac{f(b) + f'(b) + \dots + f'(a) + \dots + f'(a)}{f(a) + f'(a) + \dots + f'(a)} \right] $	$\left \frac{f^{(n)}(a)}{f^{(n)}(a)}\right = b$	-a	
	Stat	ement-1 : Ther	e is a number $c \in (a, b)$ for	or which $f^{(n+1)}$	$^{(1)}(c)=f(c)$	
		ause				
	Stat	ement-2 : If h(x) be a derivable functio	n such that h	(p) = h(q) then by Rolle	s theorem
		$)=0;d\in(p,q)$				
	(a)	Statement-1 is	true, statement-2 is tru	e and staten	nent-2 is correct expla	nation for
		statement-1				
	(b)	Statement-1 is to statement-1	rue, statement-2 is true	and statemer	nt-2 is not correct expl	anation for
	(c)	Statement-1 is tr	ue, statement-2 is false			
			alse, statement-2 is true			
55.			rentiable real valued fu	nction satisfy	ing g''(x) - 3g'(x) > 3	$\forall x \ge 0$ and
	g'(0	=-1, then $h(x)$	$=g(x)+x \ \forall x>0 $ is:			
		strictly increasin		(b) strictly	decreasing	
		non monotonic	*	(d) data in	nsufficient	
56.			ning the points (0, 3) an	d (5, -2) is ta	ingent to the curve $y =$	$\frac{c}{x+1}$; then
		value of c is:				X 1 1
	(a)	2	(b) 3	(c) 4	(d) 5	
	M	-bor of colutions	(s) of $\ln \sin x = -x^2$ if	$r \in \left[-\frac{\pi}{3\pi} \right]$	is/are ·	
57	. Nun	iber of solutions	5) Of III SIII X = -X II 3	2, 2	is, are.	
	(a)		(b) 4	(c) 6	(d) 8	

		MAGE: 222		
	(a) [-1, 1]	(b) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	(c) $\left[1-\frac{\pi}{2}, 1+\frac{\pi}{2}\right]$	$(d) \left[\frac{\pi}{2} - 1, \frac{\pi}{2} + 1 \right]$
59.	For any real number b	, let $f(b)$ denotes the ma	aximum of $\left \sin x + \frac{1}{3} \right $	$\frac{2}{+\sin x} + b \bigg \forall \times x \in R \ .$
	Then the minimum va	alue of $f(b) \forall b \in R$ is:		
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{1}{4}$	(d) 1
	2	4	4	(u) 1
60.	Which of the followin			
	(a) $x^4 + 2x^2 - 6x + 3$	2 = 0 has exactly four rea	l solution	
	(b) $x^5 + 5x + 1 = 0 \text{ h}$	as exactly three real solu	tions	
	(c) $x^n + ax + b = 0$ w	here n is an even natural	l number has atmost to	wo real solution $a, b, \in R$.
	(d) $x^3 - 3x + c = 0, c$	> 0 has two real solution	for $x \in (0,1)$	
61.			1 -	$\frac{1}{\ln x} + b \mid \forall x \in R$. Then the
	minimum value of $f(t)$	b) $\forall b \in R \text{ is }$:		
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{1}{4}$	(d) 1
62.				ch that tangent drawn to
	curve at p has the gre	atest slope in magnitude		
	(a) (0,0)	(b) $\left(\sqrt{3}, \frac{\sqrt{3}}{4}\right)$	(c) $\left(-\sqrt{3}, -\frac{\sqrt{3}}{4}\right)$	(d) $\left(1,\frac{1}{2}\right)$
63.	Let $f:[0, 2\pi] \to [-3, 3]$	be a given function defin	ed as $f(x) = 3\cos\frac{x}{2}$. The	he slope of the tangent to
	the curve $y = f^{-1}(x)$	at the point where the cu	irve crosses the y-axis	is:
	(a) -1	(b) $-\frac{2}{3}$	(c) $-\frac{1}{6}$	8
		3	0	(d) $-\frac{1}{3}$
64.	Number of stationary	points in $[0, \pi]$ for the fur	$nction f(x) = \sin x + ta$	an $x - 2x$ is:
	(a) 0	(b) 1	(c) 2	(d) 3
65.	If $a, b, c, d \in R$ such tha	$t\frac{a+2c}{b+3d} + \frac{4}{3} = 0, \text{ then the}$	e equation $ax^3 + bx^2 +$	+cx+d=0 has
	(a) atleast one root is	n (-1, 0)	(b) atleast one roo	t in (0, 1)
	(c) no root in (-1, 1)		(d) no root in (0, 2)	

58. The equation $\sin^{-1} x = |x - a|$ will have at least one solution then complete set of values of a

- **66.** If $f'(x) = \phi(x)(x-2)^2$. Where $\phi(2) \neq 0$ and $\phi(x)$ is continuous at x = 2, then in the neighbourhood of x = 2
 - (a) f is increasing if $\phi(2) < 0$
- (b) f is decreasing if $\phi(2) > 0$
- (c) f is neither increasing nor decreasing
- (d) f is increasing if $\phi(2) > 0$
- 67. If $f(x) = x^3 6x^2 + ax + b$ is defined on [1, 3] satisfies Rolle's theorem for $c = \frac{2\sqrt{3} + 1}{\sqrt{2}}$ then
 - (a) a = -11, b = 6
- (b) a = -11, b = -6
- (c) $a = 11, b \in R$
- (d) a = 22, b = -6
- 68. For which of the following function(s) Lagrange's mean value theorem is not applicable in
 - (a) $f(x) = \begin{cases} \frac{3}{2} x & , & x < \frac{3}{2} \\ \left(\frac{3}{2} x\right)^2 & , & x \ge \frac{3}{2} \end{cases}$
- (b) $f(x) = \begin{cases} \frac{\sin(x-1)}{x-1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$
- (c) f(x) = (x-1)|x-1|

- (d) f(x) = |x-1|
- **69.** If the curves $\frac{x^2}{a^2} + \frac{y^2}{4} = 1$ and $y^2 = 16x$ intersect at right angles, then :
 - (a) $a = \pm 1$
- (b) $a = \pm \sqrt{3}$
- (c) $a = \pm \frac{1}{\sqrt{3}}$ (d) $a = \pm \sqrt{2}$
- **70.** If the line $x \cos \alpha + y \sin \alpha = P$ touches the curve $4x^3 = 27ay^2$, then $\frac{P}{a} =$
 - (a) $\cot^2 \alpha \cos \alpha$
- (b) $\cot^2 \alpha \sin \alpha$
- (c) $\tan^2 \alpha \cos \alpha$ (d) $\tan^2 \alpha \sin \alpha$

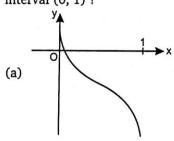
1	1	-						A	nsv	ver	S								1
1.	(d)	2.	(b)	3.	(a)	4.	(c)	5.	(b)	6.	(c)	7.	(d)	8.	(d)	9.	(c)	10.	(b)
11.	(c)	12.	(c)	13.	(c)	14.	(c)	15.	(c)	16.	(a)	17.	(b)	18.	(a)	19.	(b)	20.	(b)
21.	(b)	22.	(d)	23.	(d)	24.	(a)	25.	(d)	26.	(c)	27.	(b)	28.	(d)	29.	(c)	30.	(d)
31.	(b)	32.	(c)	33.	(d)	34.	(d)	35.	(a)	36.	(b)	37.	(c)	38.	(a)	39.	(c)	40.	(a)
41.	(a)	42.	(b)	43.	(b)	44.	(a)	45.	(d)	46.	(b)	47.	(a)	48.	(a)	49.	(d)	50.	(a)
51.	(ъ)	52.	(d)	53.	(b)	54.	(a)	55.	(a)	56.	(c)	57.	(b)	58.	(c)	59.	(b)	60.	(c)
61.	(b)	62.	(a)	63.	(b)	64.	(c)	65.	(b)	66.	(d)	67.	(c)	68.	(a)	69.	(d)	70.	(a)

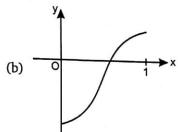
Exercise-2: One or More than One Answer is/are Correct

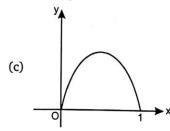
- **1.** Common tangent(s) to $y = x^3$ and $x = y^3$ is/are:
 - (a) $x-y = \frac{1}{\sqrt{3}}$
- (b) $x-y = -\frac{1}{\sqrt{3}}$ (c) $x-y = \frac{2}{3\sqrt{3}}$ (d) $x-y = \frac{-2}{3\sqrt{3}}$
- **2.** Let $f:[0,8] \to R$ be differentiable function such that f(0)=0, f(4)=1, f(8)=1, then which of the following hold(s) good?
 - (a) There exist some $c_1 \in (0, 8)$ where $f'(c_1) = \frac{1}{4}$
 - (b) There exist some $c \in (0, 8)$ where $f'(c) = \frac{1}{100}$
 - (c) There exist $c_1, c_2 \in [0, 8]$ where $8f'(c_1)f(c_2) = 1$
 - (d) There exist some $\alpha, \beta \in (0, 2)$ such that $\int_{0}^{3} f(t) dt = 3(\alpha^{2} f(\alpha^{3}) + \beta^{2} f(\beta^{3}))$
- 3. If $f(x) = \begin{cases} \sin^{-1}(\sin x) & x > 0 \\ \frac{\pi}{2} & x = 0 \text{, then} \\ \cos^{-1}(\cos x) & x < 0 \end{cases}$
 - (a) x = 0 is a point of maxima
 - (b) f(x) is continuous $\forall x \in R$
 - (c) global maximum value of $f(x) \forall x \in R$ is π
 - (d) global minimum value of $f(x) \forall x \in R$ is 0
- (d) global minimum. 4. A function $f: R \to R$ is given by $f(x) = \begin{cases} x^4 \left(2 + \sin \frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$, then
- (a) f has a continuous derivative $\forall x \in R$ (b) f is a bounded function (c) f has an global minimum at x = 0 (d) f'' is continuous $\forall x \in R$
 - (d) f'' is continuous $\forall x \in R$
- **5.** If $|f''(x)| \le 1 \forall x \in R$, and f(0) = 0 = f'(0), then which of the following can not be true?
 - (a) $f\left(-\frac{1}{2}\right) = \frac{1}{6}$ (b) f(2) = -4 (c) f(-2) = 3

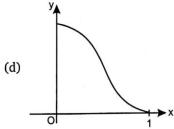
- **6.** Let $f:[-3,4] \to R$ such that f''(x) > 0 for all $x \in [-3,4]$, then which of the following are always
 - (a) f(x) has a relative minimum on (-3, 4)
 - (b) f(x) has a minimum on [-3, 4]
 - (c) f(x) has a maximum on [-3, 4]
 - (d) if f(3) = f(4), then f(x) has a critical point on [-3, 4]

- **7.** Let f(x) be twice differentiable function such that f''(x) > 0 in [0, 2]. Then:
 - (a) f(0) + f(2) = 2f(c), for at least one $c, c \in (0, 2)$
 - (b) f(0) + f(2) < 2f(1)
 - (c) f(0) + f(2) > 2f(1)
 - (d) $2f(0) + f(2) > 3f(\frac{2}{3})$
- **8.** Let g(x) be a cubic polynomial having local maximum at x = -1 and g'(x) has a local minimum at x = 1. If g(-1) = 10, g(3) = -22, then:
 - (a) perpendicular distance between its two horizontal tangents is 12
 - (b) perpendicular distance between its two horizontal tangents is 32
 - (c) g(x) = 0 has at least one real root lying in interval (-1, 0)
 - (d) g(x) = 0, has 3 distinct real roots
- **9.** The function $f(x) = 2x^3 3(\lambda + 2)x^2 + 2\lambda x + 5$ has a maximum and a minimum for :
 - (a) $\lambda \in (-4, \infty)$
- (b) $\lambda \in (-\infty, 0)$
- (c) $\lambda \in (-3,3)$
- (d) $\lambda \in (1, \infty)$
- **10.** The function $f(x) = 1 + x \ln(x + \sqrt{1 + x^2}) \sqrt{1 x^2}$ is :
 - (a) strictly increasing $\forall x \in (0,1)$
- (b) strictly decreasing $\forall x \in (-1, 0)$
- (c) strictly decreasing for $x \in (-1, 0)$
- (d) strictly decreasing for $x \in (0, 1)$
- 11. Let m and n be positive integers and x, y > 0 and x + y = k, where k is constant. Let $f(x,y) = x^m y^n$, then:
 - (a) f(x, y) is maximum when $x = \frac{mk}{m+n}$
 - (b) f(x, y) is maximum where x = y
 - (c) maximum value of f(x, y) is $\frac{m^n n^m k^{m+n}}{(m+n)^{m+n}}$
 - (d) maximum value of f(x, y) is $\frac{k^{m+n}m^m n^n}{(m+n)^{m+n}}$
- **12.** The straight line which is both tangent and normal to the curve $x = 3t^2$, $y = 2t^3$ is:
 - (a) $y + \sqrt{3}(x-1) = 0$


(b) $y - \sqrt{3}(x-1) = 0$


(c) $y + \sqrt{2}(x-2) = 0$


- (d) $y \sqrt{2}(x-2) = 0$
- 13. A curve is such that the ratio of the subnormal at any point to the sum of its co-ordinates is equal to the ratio of the ordinate of this point to its abscissa. If the curve passes through (1, 0), then possible equation of the curve(s) is:
 - (a) $y = x \ln x$


- (b) $y = \frac{\ln x}{x}$ (c) $y = \frac{2(x-1)}{x^2}$ (d) $y = \frac{1-x^2}{2x}$

- **14.** A parabola of the form $y = ax^2 + bx + c$ (a > 0) intersects the graph of $f(x) = \frac{1}{x^2 4}$. The number of possible distinct intersection(s) of these graph can be:
 - (a) 0
- (b) 2
- (c) 3
- (d) 4
- **15.** Gradient of the line passing through the point (2, 8) and touching the curve $y = x^3$, can be:
 - (a) 3
- (b) 6
- (c) 9
- (d) 12
- **16.** The equation $x + \cos x = a$ has exactly one positive root, then :
 - (a) $a \in (0,1)$
- (b) $a \in (2,3)$
- (c) $a \in (1, \infty)$
- (d) $a \in (-\infty, 1)$
- **17.** Given that f(x) is a non-constant linear function. Then the curves :
 - (a) y = f(x) and $y = f^{-1}(x)$ are orthogonal
 - (b) y = f(x) and $y = f^{-1}(-x)$ are orthogonal
 - (c) y = f(-x) and $y = f^{-1}(x)$ are orthogonal
 - (d) y = f(-x) and $y = f^{-1}(-x)$ are orthogonal
- **18.** Let $f(x) = \int_{0}^{x} e^{t^3} (t^2 1)t^2 (t + 1)^{2011} (t 2)^{2012}$ at (x > 0) then:
 - (a) The number of point of inflections is atleast 1
 - (b) The number of point of inflections is 0
 - (c) The number of point of local maxima is 1
 - (d) The number of point of local minima is 1
- **19.** Let $f(x) = \sin x + ax + b$. Then f(x) = 0 has:
 - (a) only one real root which is positive if a > 1, b < 0
 - (b) only one real root which is negative if a > 1, b > 0
 - (c) only one real root which is negative if a < -1, b < 0
 - (d) only one real root which is positive if a < -1, b < 0
- **20.** Which of the following graphs represent function whose derivatives have a maximum in the interval (0, 1)?

- **21.** Consider $f(x) = \sin^5 x + \cos^5 x 1$, $x \in \left[0, \frac{\pi}{2}\right]$, which of the following is/are correct?
 - (a) f is strictly decreasing in $\left[0, \frac{\pi}{4}\right]$
 - (b) f is strictly increasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
 - (c) There exist a number 'c' in $\left(0, \frac{\pi}{2}\right)$ such that f'(c) = 0
 - (d) The equation f(x) = 0 has only two roots in $\left[0, \frac{\pi}{2}\right]$
- **22.** Let $f(x) = \begin{bmatrix} x^{2\alpha+1} \ln x & ; & x > 0 \\ 0 & ; & x = 0 \end{bmatrix}$

If f(x) satisfies rolle's theorem in interval [0, 1], then α can be :

- (a) $-\frac{1}{2}$
- (b) $-\frac{1}{3}$
- (c) $-\frac{1}{4}$
- (d) -1
- **23.** Which of the following is/are true for the function $f(x) = \int_{0}^{x} \frac{\cos t}{t} dt \, (x > 0)$?
 - (a) f(x) is monotonically increasing in $\left((4n-1)\frac{\pi}{2},(4n+1)\frac{\pi}{2}\right) \forall n \in \mathbb{N}$
 - (b) f(x) has a local minima at $x = (4n-1)\frac{\pi}{2} \ \forall \ n \in \mathbb{N}$
 - (c) The points of inflection of the curve y = f(x) lie on the curve $x \tan x + 1 = 0$
 - (d) Number of critical points of y = f(x) in $(0, 10\pi)$ are 19
- **24.** Let $F(x) = (f(x))^2 + (f'(x))^2$, F(0) = 6, where f(x) is a thrice differentiable function such that $|f(x)| \le 1 \ \forall \ x \in [-1, 1]$, then choose the correct statement(s)
 - (a) there is at least one point in each of the intervals (-1, 0) and (0, 1) where $|f'(x)| \le 2$
 - (b) there is at least one point in each of the intervals (-1, 0) and (0, 1) where $F(x) \le 5$
 - (c) there is no point of local maxima of F(x) in (-1, 1)
 - (d) for some $c \in (-1, 1)$, $F(c) \ge 6$, F'(c) = 0 and $F''(c) \le 0$

25. Let
$$f(x) = \begin{cases} x^3 + x^2 - 10x; & -1 \le x < 0 \\ \sin x; & 0 \le x < \frac{\pi}{2} \\ 1 + \cos x; & \frac{\pi}{2} \le x \le \pi \end{cases}$$

then f(x) has:

- (a) local maximum at $x = \frac{\pi}{2}$
- (b) local minimum at $x = \frac{\pi}{2}$
- (c) absolute maximum at x = 0
- (d) absolute maximum at x = -1
- **26.** Minimum distance between the curves $y^2 = x 1$ and $x^2 = y 1$ is equal to :

(a)
$$\frac{\sqrt{2}}{4}$$

(a)
$$\frac{\sqrt{2}}{4}$$
 (b) $\frac{3\sqrt{2}}{4}$ (c) $\frac{5\sqrt{2}}{4}$ (d) $\frac{7\sqrt{2}}{4}$

(c)
$$\frac{5\sqrt{2}}{4}$$

(d)
$$\frac{7\sqrt{2}}{4}$$

- **27.** For the equation $\frac{e^{-x}}{1+x} = \lambda$ which of the following statement(s) is/are correct?
 - (a) When $\lambda \in (0, \infty)$ equation has 2 real and distinct roots
 - (b) When $\lambda \in (-\infty, -e^2)$ equation has 2 real and distinct roots
 - (c) When $\lambda \in (0, \infty)$ equation has 1 real root
 - (d) When $\lambda \in (-e, 0)$ euqation has no real root
- **28.** If y = mx + 5 is a tangent to the curve $x^3y^3 = ax^3 + by^3$ at P(1, 2), then

(a)
$$a+b=\frac{18}{5}$$

(b)
$$a > l$$

(b)
$$a > b$$
 (c) $a < b$

(d)
$$a+b=\frac{19}{5}$$

29. If
$$(f(x)-1)(x^2+x+1)^2-(f(x)+1)(x^4+x^2+1)=0$$

 $\forall x \in R - \{0\}$ and $f(x) \neq \pm 1$, then which of the following statement(s) is/are correct?

(a)
$$|f(x)| \ge 2 \forall x \in R - \{0\}$$

- (b) f(x) has a local maximum at x = -1
- (c) f(x) has a local minimum at x = 1
- (d) $\int_{-\pi}^{\pi} (\cos x) f(x) dx = 0$

Answers

1.	(c, d)	2.	(a, c, d)	3.	(a, c)	4.	(a, c)	5.	(a, b, c, d)	6.	(b, c, d)
7.	(c, d)	8.	(b, d)	9.	(a, b, c, d)	10.	(a, c)	11.	(a, d)	12.	(c, d)
13.	(a, d)	14.	(b, c, d)	15.	(a, d)	16.	(b, c)	17.	(b, c)	18.	(a, d)
19.	(a, b, c)	20.	(a, b)	21.	(a, b, c, d)	22.	(b, c)	23.	(a, b, c)	24.	(a, b, d)
25.	(a, d)	26.	(b)	27.	(b, c, d)	28.	(a, d)	29.	(a, b, c, d)		

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let y = f(x) such that xy = x + y + 1, $x \in R - \{1\}$ and g(x) = xf(x)

- 1. The minimum value of g(x) is:
 - (a) $3-\sqrt{2}$
- (b) $3 + \sqrt{2}$
- (c) $3-2\sqrt{2}$
- (d) $3 + 2\sqrt{2}$
- 2. There exists two values of x, x_1 and x_2 where $g'(x) = \frac{1}{2}$, then $|x_1| + |x_2| =$
 - (a) 1
- (b) 2
- (c) 4
- (d) 5

Paragraph for Question Nos. 3 to 5

Let
$$f(x) = \begin{bmatrix} 1-x & ; & 0 \le x \le 1 \\ 0 & ; & 1 < x \le 2 \text{ and } g(x) = \int_{0}^{x} f(t) dt. \\ (2-x)^{2} & ; & 2 < x \le 3 \end{bmatrix}$$

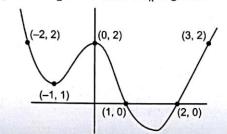
Let the tangent to the curve y = g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the perpendicular from point Q on x-axis meets the curve y = g(x) in point R.

- 3. g(1) =
 - (a) 0
- (b) $\frac{1}{2}$
- (c) 1
- (d) 2
- **4.** Equation of tangent to the curve y = g(x) at P is :
 - (a) 3y = 12x + 1
- (b) 3y = 12x 1
- (c) 12y = 3x 1
- (d) 12y = 3x + 1
- 5. If ' θ ' be the angle between tangents to the curve y = g(x) at point P and R; then $\tan \theta$ equals to:
 - (a) $\frac{5}{6}$
- (b) $\frac{5}{14}$
- (c) $\frac{5}{7}$
- (d) $\frac{5}{12}$

Paragraph for Question Nos. 6 to 8

Let $f(x) < 0 \ \forall \ x \in (-\infty, 0)$ and $f(x) > 0 \ \forall \ x \in (0, \infty)$ also f(0) = 0. Again $f'(x) < 0 \ \forall \ x \in (-\infty, -1)$ and $f'(x) > 0 \ \forall \ x \in (-1, \infty)$ also f'(-1) = 0 given $\lim_{x \to -\infty} f(x) = 0$ and $\lim_{x \to \infty} f(x) = \infty$ and function is twice differentiable.


- **6.** If $f''(x) > 0 \forall x \in (-1, \infty)$ and f'(0) = 1 then number of solutions of equation f(x) = x is:
 - (a) 2
- (b) 3
- (c) 4
- (d) None of these
- 7. If $f''(x) < 0 \forall x \in (0, \infty)$ and f'(0) = 1 then number of solutions of equation $f(x) = x^2$ is:
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

- **8.** The minimum number of points where f''(x) is zero is :
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

Paragraph for Question Nos. 9 to 11

In the given figure graph of:

$$y = p(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 is given.

- **9.** The product of all imaginary roots of p(x) = 0 is :
 - (a) -2
- (b) -1
- (c) -1/2
- (d) none of these
- **10.** If p(x) + k = 0 has 4 distinct real roots $\alpha, \beta, \gamma, \delta$ then $[\alpha] + [\beta] + [\gamma] + [\delta]$, (where $[\cdot]$ denotes greatest integer function) is equal to :
 - (a) -1
- (b) -2
- (c) 0
- (d) 1
- **11.** The minimum number of real roots of equation $(p'(x))^2 + p(x)p''(x) = 0$ are :
 - (a) 3
- (b) 4
- (c) 5
- (d) 6

Paragraph for Question Nos. 12 to 14

The differentiable function y = f(x) has a property that the chord joining any two points $A(x_1, f(x_1))$ and $B(x_2, f(x_2))$ always intersects y-axis at $(0, 2x_1x_2)$. Given that f(1) = -1, then:

- **12.** $\int_0^{1/2} f(x) dx$ is equal to :
 - (a) $\frac{1}{6}$
- (b) $\frac{1}{8}$
- (c) $\frac{1}{12}$
- (d) $\frac{1}{24}$
- **13.** The largest interval in which f(x) is monotonically increasing, is:
 - (a) $\left(-\infty,\frac{1}{2}\right]$
- (b) $\left[\frac{-1}{2},\infty\right)$
- (c) $\left(-\infty,\frac{1}{4}\right]$
- (d) $\left[\frac{-1}{4},\infty\right]$
- **14.** In which of the following intervals, the Rolle's theorem is applicable to the function F(x) = f(x) + x?
 - (a) [-1,0]
- (b) [0,1]
- (c) [-1,1]
- (d) [0, 2]

Paragraph for Question Nos. 15 to 16

Let $f(x) = 1 + \int_{0}^{1} (xe^{y} + ye^{x}) f(y) dy$ where x and y are independent variables.

- **15.** If complete solution set of 'x' for which function h(x) = f(x) + 3x is strictly increasing is $(-\infty, k)$ then $\left\lceil \frac{4}{3}e^k \right\rceil$ equals to : (where [·] denotes greatest integer function):
 - (a) 1

- **16.** If acute angle of intersection of the curves $\frac{x}{2} + \frac{y}{3} + \frac{1}{3} = 0$ and y = f(x) be θ then $\tan \theta$ equals to :
 - (a) $\frac{8}{25}$
- (b) $\frac{16}{25}$ (c) $\frac{14}{25}$ (d) $\frac{4}{5}$

1	1							A	nsv	ver	S								5
1.	(d)	2.	(c)	3.	(b)	4.	(c)	5.	(b)	6.	(d)	7.	(b)	8.	(a)	9.	(d)	10.	(a)
	(b)		(d)		(c)		(b)	15.	(c)	16.	(a)		8						

Exercise-4 : Matching Type Problems

1. Column-I gives pair of curves and column-II gives the angle θ between the curves at their intersection point.

	Column-l		Column-II
(A)	$y = \sin x, y = \cos x$	(P)	$\frac{\pi}{4}$
(B)	$x^2 = 4y, y = \frac{8}{x^2 + 4}$	(Q)	$\frac{\pi}{2}$
(C)	$\frac{x^2}{18} + \frac{y^2}{8} = 1, x^2 - y^2 = 5$	(R)	tan ⁻¹ 3
(D)	$xy = 1, x^2 - y^2 = 5$	(S)	tan ⁻¹ 5
		(T)	$\tan^{-1}(2\sqrt{2})$

2.

	Column-l	1	Column-II
(A)	$(\sin^{-1} x)^{\cos^{-1} x} - (\cos^{-1} x)^{\sin^{-1} x} \forall x \in (\cos 1, \sin 1)$	(P)	Always positive
(B)	$(\cos x)^{\sin x} - (\sin x)^{\cos x} \forall x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	(Q)	Always negative
(C)	$(\sin x)^{\sin x} - (\cos x)^{\sin x} \ \forall \ x \in \left(0, \frac{\pi}{2}\right)$	(R)	May be positive or negative for some values of <i>x</i>
(D)	$(\ln(\ln x))^{\ln(\ln x)} - (\ln x)^{\ln x} \ \forall \ x \in (e^e, \infty)$	(S)	May result in zero for some of values of x
		(T)	Indeterminate

3. Let
$$f(x) = \frac{x^3 - 4}{(x - 1)^3} \forall x \neq 1, \ g(x) = \frac{x^4 - 2x^2}{4} \ \forall \ x \in R, h(x) \frac{x^3 + 4}{(x + 1)^3} \ \forall \ x \neq -1,$$

/	Column-l		Column-II
(A)	The number of possible distinct real roots of equation $f(x) = c$ where $c \ge 4$ can be	(P)	0
(B)	The number of possible distinct real roots of equation $g(x) = c$, where $c \ge 0$ can be	(Q)	1
(C)	The number of possible distinct real roots of equation $h(x) = c$, where $c \ge 1$ can be	(R)	2

(D)	The number of possible distinct real roots of equation $g(x) = c$ where $-1 < c < 0$ can be	(S)	3	
		(T)	4	

4.

	Column-I		Column-II
(A)	If α , β , γ are roots of $x^3 - 3x^2 + 2x + 4 = 0$ and $y = 1 + \frac{\alpha}{x - \alpha} + \frac{\beta x}{(x - \alpha)(x - \beta)} + \frac{\gamma x^2}{(x - \alpha)(x - \beta)(x - \gamma)}$	(P)	2
	then value of y at $x = 2$ is:		
(B)	If $x^3 + ax + 1 = 0$ and $x^4 + ax + 1 = 0$ have a common roots then the value of $ a $ can be equal to	(Q)	3
(C)	The number of local maximas of the function $x^2 + 4\cos x + 5$ is more than	(R)	4
(D)	If $f(x) = 2 x ^3 + 3x^2 - 12 x + 1$, where $x \in [-1, 2]$ then greatest value of $f(x)$ is more than	(S)	5
		(T)	0

5.

1	Column-l		Column-II
(A)	Maximum value of $f(x) = \log_2\left(\frac{4}{\sqrt{x+2} + \sqrt{2-x}}\right)$	(P)	0
(B)	The value of $\left[4\sum_{n=1}^{\infty}\cot^{-1}\left(1+\sum_{k=1}^{n}2k\right)\right] =$	(Q)	1
(0)	([.] represent greatest integer function) Let $f(x) = x \sin \pi x$, $x > 0$ then number of points in	(P)	2
(C)	(0, 2) where $f'(x)$ vanishes, is	(10)	2
(D)	$\lim_{x \to 0^+} \left[\frac{x}{e^x - 1} \right] =$	(S)	3
	([·] represent greatest integer function)		Barrier and California

6. Consider the function $f(x) = \frac{\ln x}{8} - ax + x^2$ and $a \ge 0$ is a real constant :

	Column-l	-	Column-II
(A)	f(x) gives a local maxima at	(P)	$a=1; x=\frac{1}{4}$
(B)	f(x) gives a local minima at	(Q)	$a > 1; x = \frac{a - \sqrt{a^2 - 1}}{4}$
(C)	f(x) gives a point of inflection for	(R)	0 ≤ a < 1
(D)	$f(x)$ is strictly increasing for all $x \in \mathbb{R}^+$	(S)	$a > 1; x = \frac{a + \sqrt{a^2 - 1}}{4}$

7. The function $f(x) = \sqrt{ax^3 + bx^2 + cx + d}$ has its non-zero local minimum and maximum values at x = -2 and x = 2 respectively. If 'a' is one of the root of $x^2 - x - 6 = 0$, then match the following:

1	Column-l		Column-II
(A)	The value of 'a' is	(P)	0
(B)	The value of 'b' is	(Q)	24
(C)	The value of 'c' is	(R)	Greater than 32
(D)	The value of 'd' is	(S)	-2

8.

	Column-I		Column-II
(A)	The ratio of altitude to the radius of the cylinder of maximum volume that can be inscribed in a given sphere is	EEE/6-20137	$\frac{1}{\sqrt{2}}$
(B)	The ratio of radius to the altitude of the cone of the greatest volume which can be inscribed in a given sphere is		$\sqrt{2}$
(C)	The cone circumscribing the sphere of radius 'r' has the maximum volume if its semi vertical angle is θ , then $33 \sin \theta =$		$\frac{32}{3}$.
(D)	The greatest value of x^3y^4 if $2x + 3y = 7$, $x \ge 0$, $y \ge 0$ is	(S)	11

Answers

- 1. $A \rightarrow T$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow Q$
- 2. $A \rightarrow R, S; B \rightarrow Q; C \rightarrow R, S; D \rightarrow Q$
- 3. $A \rightarrow Q$, R; $B \rightarrow R$, S; $C \rightarrow Q$, R, S; $D \rightarrow P$, R, T
- 4. $A \rightarrow P$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow P$, Q, R, T
- 5. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow R$; $D \rightarrow P$
- **6.** $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$
- 7. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$
- **8.** $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow R$

Exercise-5 : Subjective Type Problems

- 1. A conical vessel is to be prepared out of a circular sheet of metal of unit radius. In order that the vessel has maximum volume, the sectorial area that must be removed from the sheet is A_1 and the area of the given sheet is A_2 . If $\frac{A_2}{A_1} = m + \sqrt{n}$, where $m, n \in \mathbb{N}$, then m + n is equal to.
- **2.** On [1, e], the least and greatest values of $f(x) = x^2 \ln x$ are m and M respectively, then $[\sqrt{M+m}]$ is : (where [] denotes greatest integer function)
- **3.** If $f(x) = \frac{px}{e^x} \frac{x^2}{2} + x$ is a decreasing function for every $x \le 0$. Find the least value of p^2 .
- **4.** Let $f(x) = \begin{cases} xe^{ax} & \text{, } x \le 0 \\ x + ax^2 x^3 & \text{, } x > 0 \end{cases}$. Where a is a positive constant. The interval in which f'(x) is increasing is $\left\lceil \frac{k}{a}, \frac{a}{l} \right\rceil$. Then k + l is equal to
- **5.** Find sum of all possible values of the real parameter 'b' if the difference between the largest and smallest values of the function $f(x) = x^2 2bx + 1$ in the interval [0, 1] is 4.
- **6.** Let '0' be the angle in radians between the curves $\frac{x^2}{36} + \frac{y^2}{4} = 1$ and $x^2 + y^2 = 12$. If $\theta = \tan^{-1}\left(\frac{a}{\sqrt{3}}\right)$; Find the value of a.
- 7. Let set of all possible values of λ such that $f(x) = e^{2x} (\lambda + 1)e^x + 2x$ is monotonically increasing for $\forall x \in R$ is $(-\infty, k]$. Find the value of k.
- **8.** Let a, b, c and d be non-negative real number such that $a^5 + b^5 \le 1$ and $c^5 + d^5 \le 1$. Find the maximum value of $a^2c^3 + b^2d^3$.
- **9.** There is a point (p,q) on the graph of $f(x) = x^2$ and a point (r,s) on the graph of g(x) = -8/x, where p > 0 and r > 0. If the line through (p,q) and (r,s) is also tangent to both the curves at these points respectively, then find the value of (p+r).
- **10.** $f(x) = \max |2\sin y x|$ where $y \in R$ then determine the minimum value of f(x).
- 11. Let $f(x) = \int_0^x ((a-1)(t^2+t+1)^2-(a+1)(t^4+t^2+1)) dt$. Then the total number of integral values of 'a' for which f'(x) = 0 has no real roots is
- **12.** The number of real roots of the equation $x^{2013} + e^{2014x} = 0$ is
- **13.** Let the maximum value of expression $y = \frac{x^4 x^2}{x^6 + 2x^3 1}$ for x > 1 is $\frac{p}{q}$ where p and q are relatively prime positive integers. Find the value of (p + q).

- **14.** The least positive value of the parameter 'a' for which there exists at least one line that is tangent to the graph of the curve $y = x^3 ax$, at one point and normal to the graph at another point is $\frac{p}{q}$; where p and q are relatively prime positive integers. Find product pq.
- **15.** Let $f(x) = x^2 + 2x t^2$ and f(x) = 0 has two roots $\alpha(t)$ and $\beta(t)(\alpha < \beta)$ where t is a real parameter. Let $I(t) = \int_{\alpha}^{\beta} f(x) dx$. If the maximum value of I(t) be λ and $|\lambda| = \frac{p}{q}$ where p and q are relatively prime positive integers. Find the product (pq).
- 16. A tank contains 100 litres of fresh water. A solution containing 1 gm/litre of salt runs into the tank at the rate of 1 lit/min. The homogenised mixture is pumped out of the tank at the rate of 3 lit/min. If T be the time when the amount of salt in the tank is maximum. Find [T] (where [-] denotes greatest integer function)
- 17. If f(x) is continuous and differentiable in [-3, 9] and $f'(x) \in [-2, 8] \ \forall \ x \in (-3, 9)$. Let N be the number of divisors of the greatest possible value of f(9) f(-3), then find the sum of digits of N.
- **18.** It is given that f(x) is defined on R satisfying f(1) = 1 and for $\forall x \in R$, $f(x+5) \ge f(x) + 5$ and $f(x+1) \le f(x) + 1$. If g(x) = f(x) + 1 x, then g(2002) = f(x) + 1 x.
- 19. The number of normals to the curve $3y^3 = 4x$ which passes through the point (0,1) is
- **20.** Find the number of real root(s) of the equation $ae^x = 1 + x + \frac{x^2}{2}$; where a is positive constant.
- **21.** Let $f(x) = ax + \cos 2x + \sin x + \cos x$ is defined for $\forall x \in R$ and $a \in R$ and is strictly increasing function. If the range of a is $\left[\frac{m}{n}, \infty\right]$, then find the minimum value of (m-n).
- **22.** If p_1 and p_2 are the lengths of the perpendiculars from origin on the tangent and normal drawn to the curve $x^{2/3} + y^{2/3} = 6^{2/3}$ respectively. Find the value of $\sqrt{4p_1^2 + p_2^2}$.

						Ansv	vers						1
1.	9	2.	2	3.	1	4.	1	5.	1	6.	2	7.	3
8.	1	9.	5	10.	2	11.	3	12.	1	13.	7	14.	1
15.	12	16.	27	17.	3	18.	1	19.	1	20.	1	21.	9
22.	6					2							

Chapter 5 - Indefinite and Definite Integration

INTEGRATION

Exercise-1: Single Choice Problems

$$\mathbf{1.} \int a^x \left(\ln x + \ln a \cdot \ln \left(\frac{x}{e} \right)^x \right) dx =$$

(a)
$$a^x \ln \left(\frac{e}{x}\right)^{2x} + C$$

(b)
$$a^x \ln\left(\frac{x}{e}\right)^x + C$$

(c)
$$a^x + \ln\left(\frac{x}{e}\right)^x + C$$

(d) None of these

2. The value of:

$$\lim_{n\to\infty}\left(\frac{1}{\sqrt{n}\sqrt{n+1}}+\frac{1}{\sqrt{n}\sqrt{n+2}}+\frac{1}{\sqrt{n}\sqrt{n+3}}+\ldots\ldots+\frac{1}{\sqrt{n}\sqrt{2n}}\right)$$
 is :

(a)
$$\sqrt{2}-1$$

(b)
$$2(\sqrt{2}-1)$$
 (c) $\sqrt{2}+1$

(c)
$$\sqrt{2} + 1$$

(d)
$$2(\sqrt{2}+1)$$

3. If
$$\int \frac{\sin x}{\sin (x - \alpha)} dx = Ax + B \log \sin (x - \alpha) + C$$
, then value of (A, B) is:

(a)
$$(\sin \alpha, \cos \alpha)$$

(b)
$$(\cos \alpha, \sin \alpha)$$

(c)
$$(-\sin\alpha,\cos\alpha)$$

(c)
$$(-\sin \alpha, \cos \alpha)$$
 (d) $(-\cos \alpha, \sin \alpha)$

4. The value of the integral $\int_{-\infty}^{2} \frac{\log(x^2+2)}{(x+2)^2} dx$ is:

(a)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 - \frac{1}{4} \log 3$$

(a)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 - \frac{1}{4} \log 3$$
 (b) $\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} - \frac{5}{12} \log 2 - \frac{1}{12} \log 3$

(c)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 + \frac{1}{12} \log 3$$
 (d) $\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} - \frac{5}{12} \log 2 + \frac{1}{12} \log 3$

(d)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} - \frac{5}{12} \log 2 + \frac{1}{12} \log 3$$

5. If
$$I_1 = \int_0^1 \frac{1+x^8}{1+x^4} dx$$
 and $I_2 = \int_0^1 \frac{1+x^9}{1+x^3} dx$, then:

(a)
$$I_1 > 1, I_2 < 1$$

(a)
$$I_1 > 1, I_2 < 1$$
 (b) $I_1 < 1, I_2 > 1$

(c)
$$1 < I_1 < I_2$$
 (d) $I_2 < I_1 < 1$

(d)
$$I_2 < I_1 < 1$$

6. Let $f:(0,1) \to (0,1)$ be a differentiable function such that $f'(x) \neq 0$ for all $x \in (0,1)$ and

$$f\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2}. \text{ Suppose for all } x, \lim_{t \to x} \left(\frac{\int_{0}^{t} \sqrt{1 - (f(s))^2} ds - \int_{0}^{x} \sqrt{1 - (f(s))^2} ds}{f(t) - f(x)}\right) = f(x). \text{ Then the value}$$

of $f\left(\frac{1}{4}\right)$ belongs to:

- (a) $\left\{ \frac{\sqrt{7}}{4}, \frac{\sqrt{15}}{4} \right\}$ (b) $\left\{ \frac{\sqrt{7}}{3}, \frac{\sqrt{15}}{3} \right\}$ (c) $\left\{ \frac{\sqrt{7}}{2}, \frac{\sqrt{15}}{2} \right\}$ (d) $\left\{ \sqrt{7}, \sqrt{15} \right\}$

7. If $f(\theta) = \frac{4}{3}(1 - \cos^6 \theta - \sin^6 \theta)$, then

$$\lim_{n\to\infty}\frac{1}{n}\left[\sqrt{f\left(\frac{1}{n}\right)}+\sqrt{f\left(\frac{2}{n}\right)}+\sqrt{f\left(\frac{3}{n}\right)}+\ldots+\sqrt{f\left(\frac{n}{n}\right)}\right]=$$

- (a) $\frac{1-\cos 1}{2}$ (b) $1-\cos 2$ (c) $\frac{\sin 2}{2}$ (d) $\frac{1-\cos 2}{2}$

8. The value of $\int_{0}^{1} \frac{(x^6 - x^3)}{(2x^3 + 1)^3} dx$ is equal to :

- (a) $-\frac{1}{6}$ (b) $-\frac{1}{12}$ (c) $-\frac{1}{18}$ (d) $-\frac{1}{36}$

9.
$$2\int_{0}^{\frac{1}{\sqrt{2}}} \frac{\sin^{-1} x}{x} dx - \int_{0}^{1} \frac{\tan^{-1} x}{x} dx =$$

- (a) $\frac{\pi}{9} \ln 2$
- (b) $\frac{\pi}{4} \ln 2$
- (c) $\frac{\pi}{2\sqrt{2}} \ln 2$ (d) $\frac{\pi}{2} \ln 2$

10. Let f(x) be a differentiable function such that $f(x) = x^2 + \int_0^x e^{-t} f(x-t) dt$, then $\int_0^1 f(x) dx = \int_0^x e^{-t} f(x-t) dt$

- (c) $\frac{7}{12}$

11. If $f'(x) = f(x) + \int_{a}^{1} f(x) dx$ and given f(0) = 1, then $\int f(x) dx$ is equal to :

- (a) $\frac{2}{3-e}e^x + \left(\frac{3-e}{1-e}\right)x + C$
- (b) $\frac{2}{3-e}e^x + \left(\frac{1-e}{3-e}\right)x + C$
- (c) $\frac{3}{3-e}e^x + \left(\frac{1+e}{3+e}\right)x + C$
- (d) $\frac{2}{2-e}e^x + \left(\frac{1-e}{3+e}\right)x + C$

(where C is an arbitrary constant.)

12. For any
$$x \in R$$
, and f be a continuous function. Let $I_1 = \int_{\sin^2 x}^{1+\cos^2 x} tf(t(2-t)) dt$, $I_2 = \int_{\sin^2 x}^{1+\cos^2 x} f(t(2-t)) dt$,

then $I_1 =$

- (a) I₂
- (b) $\frac{1}{2}I_2$
- (c) 2I₂
- (d) 3I₂

13. If the integral $\int \frac{5 \tan x \, dx}{\tan x - 2} = x + a \ln|\sin x - 2\cos x| + C$, then 'a' is equal to:

- (a) 1
- (b) 2
- (c) -1
- (d) -2

14. $\int \frac{(2+\sqrt{x}) dx}{(x+1+\sqrt{x})^2}$ is equal to :

(a)
$$\frac{x}{x+\sqrt{x}+1}+C$$

(b)
$$\frac{2x}{x + \sqrt{x} + 1} + C$$

(c)
$$\frac{-2x}{x + \sqrt{x} + 1} + C$$

(d)
$$\frac{-x}{x + \sqrt{x} + 1} + C$$

(where C is an arbitrary constant.)

15. Evaluate
$$\int \frac{\sqrt[3]{x + \sqrt{2 - x^2}} \left(\sqrt[6]{1 - x\sqrt{2 - x^2}} \right) dx}{\sqrt[3]{1 - x^2}}; x \in (0, 1):$$

(a)
$$2^{\frac{1}{6}}x + C$$

(b)
$$2^{\frac{1}{12}}x + C$$

(c)
$$2^{\frac{1}{3}}x + C$$

(d) None of these

16.
$$\int \frac{dx}{\sqrt{1-\tan^2 x}} = \frac{1}{\lambda} \sin^{-1} (\lambda \sin x) + C, \text{ then } \lambda =$$

(a)
$$\sqrt{2}$$

(c) 2

(d) $\sqrt{5}$

17.
$$\int \frac{dx}{\sqrt[3]{x^{5/2}(x+1)^{7/2}}}$$
 is equal to :

(a)
$$-\left(\frac{x+1}{x}\right)^{1/6} + C$$

(b)
$$6\left(\frac{x+1}{x}\right)^{-1/6} + C$$

(c)
$$\left(\frac{x}{x+1}\right)^{5/6} + C$$

(d)
$$-\left(\frac{x}{x+1}\right)^{5/6} + C$$

18. If $I_n = \int (\sin x)^n dx$; $n \in \mathbb{N}$, then $5I_4 - 6I_6$ is equal to :

(a)
$$\sin x \cdot (\cos x)^5 + C$$

(b)
$$\sin 2x \cos 2x + C$$

(c)
$$\frac{\sin 2x}{8} [1 + \cos^2 2x - 2\cos 2x] + C$$

(d)
$$\frac{\sin 2x}{8} [1 + \cos^2 2x + 2\cos 2x] + C$$

19. $\int \frac{x^2}{(a+bx)^2} dx$ equals to:

(a)
$$\frac{1}{b^3} \left(a + bx - a \ln |a + bx| - \frac{a^2}{a + bx} \right) + 0$$

(a)
$$\frac{1}{b^3} \left(a + bx - a \ln|a + bx| - \frac{a^2}{a + bx} \right) + C$$
 (b) $\frac{1}{b^3} \left(a + bx - 2a \ln|a + bx| - \frac{a^2}{a + bx} \right) + C$

(c)
$$\frac{1}{b^3} \left(a + bx + 2a \ln|a + bx| - \frac{a^2}{a + bx} \right) + C$$
 (d) $\frac{1}{b^3} \left(a + bx - 2a \ln|a + ax| - \frac{a^2}{a + bx} \right) + C$

(d)
$$\frac{1}{b^3} \left(a + bx - 2a \ln |a + ax| - \frac{a^2}{a + bx} \right) + C$$

20.
$$\int \frac{8x^{43} + 13x^{38}}{(x^{13} + x^5 + 1)^4} dx =$$

(a)
$$\frac{x^{39}}{3(x^{13}+x^5+1)^3}+C$$

(b)
$$\frac{x^{39}}{(x^{13} + x^5 + 1)^3} + C$$

(c)
$$\frac{x^{39}}{5(x^{13}+x^5+1)^5}+C$$

(d) None of these

21.
$$\int \left(\frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{10\cos^2 x + 5\cos x \cos 3x + \cos x \cos 5x} \right) dx = f(x) + C, \text{ then } f(10) \text{ is equal to } :$$

(d) 2cos10

22.
$$\int (1+x-x^{-1})e^{x+x^{-1}}dx =$$

(a)
$$(x+1)e^{x+x^{-1}}+C$$

(b)
$$(x-1)e^{x+x^{-1}}+C$$

(c)
$$-xe^{x+x^{-1}} + C$$

(d)
$$xe^{x+x^{-1}} + C$$

23. If
$$\int e^x \left(\frac{2 \tan x}{1 + \tan x} + \csc^2 \left(x + \frac{\pi}{4} \right) \right) dx = e^x \cdot g(x) + K$$
, then $g\left(\frac{5\pi}{4} \right) = \frac{\pi}{4}$

$$(c) -1$$

(d) 2

24.
$$\int e^{x \sin x + \cos x} \left(\frac{x^4 \cos^3 x - x \sin x + \cos x}{x^2 \cos^2 x} \right) dx =$$

(a)
$$e^{x \sin x + \cos x} \left(x - \frac{1}{\cos x} \right) + C$$

(b)
$$e^{x \sin x + \cos x} \left(x - \frac{1}{x \cos x} \right) + C$$

(c)
$$e^{x \sin x + \cos x} \left(1 - \frac{1}{x \cos x} \right) + C$$

(d)
$$e^{x \sin x + \cos x} \left(1 - \frac{x}{\cos x} \right) + C$$

25. The value of the definite integral
$$\int_{0}^{1} \frac{1+x+\sqrt{x+x^2}}{\sqrt{x}+\sqrt{1+x}} dx$$
 is :

(a)
$$\frac{1}{3}(2^{1/2}-1)$$

(b)
$$\frac{2}{3}(2^{1/2}-1)$$

(c)
$$\frac{2}{3}(2^{3/2}-1)$$

(d)
$$\frac{1}{3}(2^{3/2}-1)$$

26.
$$\int x^{x^2+1} (2\ln x + 1) dx$$

(a)
$$x^{2x} + 0$$

(b)
$$x^2 \ln x + 0$$

(c)
$$x^{(x^x)} + C$$

(d)
$$(x^x)^x + C$$

27. If
$$\int \frac{\csc^2 x - 2010}{\cos^{2010} x} dx = -\frac{f(x)}{(g(x))^{2010}} + C$$
; where $f\left(\frac{\pi}{4}\right) = 1$; then the number of solutions of the equation $\frac{f(x)}{g(x)} = \{x\}$ in $[0, 2\pi]$ is/are: (where $\{\cdot\}$ represents fractional part function)

28.
$$\int x^x \left((\ln x)^2 + \ln x + \frac{1}{x} \right) dx$$
 is equal to :

(a)
$$x^{x} \left((\ln x)^{2} - \frac{1}{x} \right) + C$$

(b)
$$x^{x}(\ln x - x) + C$$

(c)
$$x^x \frac{(\ln x)^2}{2} + C$$

(d)
$$x^x \ln x + C$$

29. If
$$I = \int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}}$$
 is equal to :

(a)
$$\frac{\sqrt{2x^4 - 2x^2 + 1}}{x^2} + C$$

(b)
$$\frac{\sqrt{2x^4-2x^2+1}}{x}+C$$

(c)
$$\frac{\sqrt{2x^4-2x^2+1}}{x}+C$$

(d)
$$\frac{\sqrt{2x^4 - 2x^2 + 1}}{2x^2} + C$$

30.
$$I = \int \left(\frac{\ln x - 1}{(\ln x)^2 + 1}\right)^2 dx$$
 is equal to :

(a)
$$\frac{x}{x^2+1}+0$$

(b)
$$\frac{\ln x}{(\ln x)^2 + 1} + 0$$

(c)
$$\frac{x}{1 + (\ln x)^2} + C$$

(a)
$$\frac{x}{x^2+1} + C$$
 (b) $\frac{\ln x}{(\ln x)^2+1} + C$ (c) $\frac{x}{1+(\ln x)^2} + C$ (d) $e^x \left(\frac{x}{x^2+1}\right) + C$

31.
$$I = \int \frac{dx}{\sqrt[4]{(x-1)^3(x+2)^5}} = k \sqrt[4]{\frac{x-1}{x+2}} + C$$
, then 'k' is equal to:

(a)
$$\frac{1}{3}$$

(b)
$$\frac{2}{3}$$

(c)
$$\frac{3}{4}$$

(d)
$$\frac{4}{3}$$

32.
$$\int \frac{1-x^7}{x(1+x^7)} dx = P \log|x| + Q \log|x^7 + 1| + C, \text{ then } :$$

(a)
$$2P - 7Q = 0$$

(b)
$$2P + 7Q = 0$$

(c)
$$7P + 2Q = 0$$
 (d) $7P - 2Q = 1$

(d)
$$7P - 20 = 1$$

33.
$$I = \int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx$$
 is equal to :

(a)
$$\sin 2x + C$$

(b)
$$\frac{\sin 2x}{2} + C$$

(a)
$$\sin 2x + C$$
 (b) $\frac{\sin 2x}{2} + C$ (c) $\frac{-\sin 2x}{2} + C$ (d) $-2\sin 2x + C$

(d)
$$-2\sin 2x + C$$

34.
$$I = \int \frac{(\sin 2x)^{1/3} d(\tan^{1/3} x)}{\sin^{2/3} x + \cos^{2/3} x} =$$

(a)
$$\frac{1}{2^{2/3}} \ln (1 + \tan^{1/3} x) + C$$

(b)
$$\ln(1 + \tan^{2/3} x) + C$$

(c)
$$2^{1/3} \ln(1 + \tan^{2/3} x) + C$$

(d)
$$\frac{1}{2^{2/3}} \ln(1 + \tan^{2/3} x) + C$$

35.
$$\int \sqrt{\frac{(2012)^{2x}}{1-(2012)^{2x}}} (2012)^{\sin^{-1}(2012)^x} dx =$$

(a)
$$(\log_{2012} e)^2 (2012)^{\sin^{-1}(2012)^x} + C$$

(b)
$$(\log_{2012} e)^2 (2012)^{x+\sin^{-1}(2012)^x} + C$$

(c)
$$(\log_{2012} e)^2 (2012)^{\sin^{-1}(2012)^x} + C$$

(d)
$$\frac{(2012)^{\sin^{-1}(2012)^x}}{(\log_{2012} e)^2} + C$$

(where C denotes arbitrary constant.)

36.
$$\int \frac{(x+2) dx}{(x^2+3x+3)\sqrt{x+1}}$$
 is equal to :

(a)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3(x+1)}} \right) + C$$

(b)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\sqrt{\frac{x}{3(x+1)}} \right) + C$$

(c)
$$\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{\sqrt{x}}{3(x+1)} \right) + C$$

(d)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}(x+1)} \right) + C$$

(where C is arbitrary constant.)

37.
$$\int \left(\frac{f(x)g'(x) - f'(x)g(x)}{f(x)g(x)} \right) (\log(g(x)) - \log(f(x))) dx \text{ is equal to :}$$

(a)
$$\log \left(\frac{g(x)}{f(x)} \right) + C$$

(b)
$$\frac{1}{2} \left(\frac{g(x)}{f(x)} \right)^2 + C$$

(c)
$$\frac{1}{2} \left(\log \left(\frac{g(x)}{f(x)} \right) \right)^2 + C$$

(d)
$$\log \left(\left(\frac{g(x)}{f(x)} \right)^2 \right) + C$$

$$38. \int \left(\int e^x \left(\ln x + \frac{2}{x} - \frac{1}{x^2} \right) dx \right) dx =$$

(a)
$$e^x \ln x + C_1 x + C_2$$

(b)
$$e^x \ln x + \frac{1}{x} + C_1 x + C_2$$

(c)
$$\frac{\ln x}{x} + C_1 x + C_2$$

(d) None of these

39.	. Maximum value of the	e function $f(x) = \pi^2 \int_0^1 t \sin x$	$n(x + \pi t)dt$ over all re	al number x:
40.	(a) $\sqrt{\pi^2 + 1}$ Let 'f' is a functi	(b) $\sqrt{\pi^2 + 2}$ on, continuous on [0]	(c) $\sqrt{\pi^2 + 3}$ (g) 1] such that $f(x)$	(d) $\sqrt{\pi^2 + 4}$ $x \le \sqrt{5} \forall x \in [0, 1] \text{ and}$
	$f(x) \le \frac{2}{x} \forall x \in \left[\frac{1}{2}, 1\right]$	then the smallest 'a' for v	which $\int_{0}^{1} f(x) dx \le a$ hol	ds for all ' f ' is :
	(a) $\sqrt{5}$	(b) $\frac{\sqrt{5}}{2} + 2 \ln 2$	(c) $2 + \ln\left(\frac{\sqrt{5}}{2}\right)$	(d) $2+2\ln\left(\frac{\sqrt{5}}{2}\right)$
41.	Let $I_n = \int_{1}^{e^2} (\ln x)^n d(x^2)$	2), then the value of $2I_{n}$	+ nI_{n-1} equals to :	
	(a) 0	(b) $2e^2$	(c) e ²	(d) 1
42	Let a function $f:R \to \mathbb{R}$	R be defined as $f(x) = x$	$x + \sin x$. The value of	$\int_{0}^{\pi} f^{-1}(x) dx \text{ will be :}$
	(a) $2\pi^2$	(b) $2\pi^2 - 2$	(c) $2\pi^2 + 2$	(d) π^2
43.	The value of the defin	nite integral $\int_{-1}^{1} e^{-x^4} \left(2 + \ln \frac{1}{x^4} \right)$	$x \left(x + \sqrt{x^2 + 1}\right) + 5x^3$	$-8x^4$ dx is equal to:
	(a) 4e	(b) $\frac{4}{e}$	(c) 2e	(d) $\frac{2}{6}$
44.	$\int_{-10}^{0} \frac{\left \frac{2[x]}{3x - [x]} \right }{\frac{2[x]}{3x - [x]}} dx \text{ is equ}$	ial to (where [*] denotes	greatest integer funct	ion.)
	(a) $\frac{28}{3}$	(b) $\frac{1}{3}$	(c) 0	(d) None of these
45.	If $f(x) = \frac{x}{1 + (\ln x)(\ln x)}$	$\frac{1}{x)\dots\infty}$ $\forall x \in [1,\infty)$ then	$\int_{1}^{\infty} f(x) dx \text{ equals is :}$	
	(a) $\frac{e^2-1}{2}$	(b) $\frac{e^2+1}{2}$	(c) $\frac{e^2-2e}{2}$	(d) None of these
46.	$\int_{0}^{4} \frac{(y^2 - 4y + 5)\sin(y - 4y + 5)\sin(y - 4y + 1)}{(2y^2 - 8y + 11)}$	$\frac{-2}{2}$ dy is equal to:		
	(a) 0	(b) 2	(c) -2	(d) None of these

47. Let $\frac{d}{dx}F(x) = \left(\frac{e^{\sin x}}{x}\right)$, x > 0. If $\int_{-\infty}^{4} \frac{3}{x}e^{\sin x^3} dx = F(k) - F(1)$, then one of the possible values of k,

(a) 15

(a) 15 (b) 16 (c) 6 $\int_{\pi+he^{-1/h}}^{\pi+he^{-1/h}} x^2 e^{-x^2} dx - \int_{0}^{\pi} x^2 e^{-x^2} dx$ 48. Value of $\lim_{h\to 0} \frac{\int_{0}^{\pi+he^{-1/h}} x^2 e^{-x^2} dx}{he^{-1/h}}$ is equal to:

(a) $\pi(1-\pi^2)e^{-\pi^2}$ (b) $2\pi(1-\pi^2)e^{-\pi^2}$ (c) $\pi(1-\pi)e^{-\pi}$

(d) 64

49. Let $f: R^+ \to R$ be a differentiable function with f(1) = 3 and satisfying:

 $\int_{1}^{xy} f(t) dt = y \int_{1}^{x} f(t) dt + x \int_{1}^{y} f(t) dt \ \forall \ x, y \in \mathbb{R}^{+}, \text{ then } f(e) =$

50. If [-] denotes the greatest integer function, then the integral $\int_{0}^{\pi/2} \frac{e^{\sin x - [\sin x]} d(\sin^2 x - [\sin^2 x])}{\sin x - [\sin x]}$ is

 λ , then $[\lambda - 1]$ is equal to:

(d) 3

51. Calculate the reciprocal of the limit $\lim_{x\to\infty}\int_{0}^{x}xe^{t^2-x^2}dt$

(a) 0 (b) 1 (c) 2 (d) 3 **52.** Let $L = \lim_{n \to \infty} \left(\frac{(2 \cdot 1 + n)}{1^2 + n \cdot 1 + n^2} + \frac{(2 \cdot 2 + n)}{2^2 + n \cdot 2 + n^2} + \frac{(2 \cdot 3 + n)}{3^2 + n \cdot 3 + n^2} + \dots + \frac{(2 \cdot n + n)}{3n^2} \right)$ then value

(a) 2

(b) 3

(d) $\frac{3}{2}$

53. The value of the definite integral $\int_{0}^{2} \left(\sqrt{1+x^3} + \sqrt[3]{x^2+2x} \right) dx$ is :

(a) 4

(b) 5

(d) 7

54. The value of the definite integral $\int_{0}^{\infty} \frac{\ln x}{x^2 + 4} dx$ is :

(a) $\frac{\pi \ln 3}{2}$

(b) $\frac{\pi \ln 2}{3}$

(c) $\frac{\pi \ln 2}{4}$

(d) $\frac{\pi \ln 4}{3}$

55.	The value of the definite integral	$\int_{0}^{0} ((x-5)+(x-5)^{2}+(x-5)^{3}) dx$ is	:
		0	

- (a) $\frac{125}{3}$
- (b) $\frac{250}{3}$ (c) $\frac{125}{6}$
- (d) $\frac{250}{4}$

56. The value of definite integral $\int_{0}^{\infty} \frac{dx}{(1+x^9)(1+x^2)}$ equals to :

- (d) $\frac{\pi}{2}$

57. The value of the definite integral $\int_{0}^{\pi/2} \left(\frac{1 + \sin 3x}{1 + 2\sin x} \right) dx$ equals to :

- (a) $\frac{\pi}{2}$
- (b) 1
- (c) $\frac{1}{2}$
- (d) $\frac{\pi}{4}$

58. The value of
$$\lim_{x \to \infty} \frac{\int_{0}^{x} (\tan^{-1} x)^{2} dx}{\sqrt{x^{2} + 1}} =$$

(b) $\frac{\pi^2}{4}$

(d) None of these

59. If
$$\int_{0}^{1} \left(\sum_{r=1}^{2013} \frac{x}{x^2 + r^2} \right) \left(\prod_{r=1}^{2013} (x^2 + r^2) \right) dx = \frac{1}{2} \left[\left(\prod_{r=1}^{2013} (1 + r^2) \right) - k^2 \right]$$

then k =

- (a) 2013
- (b) 2013!
- (c) 2013^2
- (d) 2013²⁰¹³

60.
$$f(x) = 2x - \tan^{-1} x - \ln(x + \sqrt{1 + x^2})$$

- (a) strictly increases $\forall x \in R$
- (b) strictly increases only in (0, ∞)
- (c) strictly decreases $\forall x \in R$
- (d) strictly decreases in $(0, \infty)$ and strictly increases in $(-\infty, 0)$

61. The value of the definite integral
$$\int_{0}^{\pi/2} \frac{dx}{\tan x + \cot x + \csc x + \sec x}$$
 is :

- (a) $1 \frac{\pi}{4}$
- (b) $\frac{\pi}{4} + 1$ (c) $\pi + \frac{1}{4}$
- (d) None of these

- **62.** The value of the definite integral $\int_{3}^{7} \frac{\cos x^{2}}{\cos x^{2} + \cos(10 x)^{2}} dx$ is:
 - (a) 2
- (b) 1
- (c) $\frac{1}{2}$
- (d) None of these

- **63.** The value of the integral $\int_{-1}^{e^2} \left| \frac{\ln x}{x} \right| dx$ is :
 - (a) $\frac{3}{2}$
- (c) 3
- (d) 5

64. The value of $\lim_{x \to \frac{\pi}{4}} \frac{\int_{2}^{\cos c^2 x} tg(t) dt}{x^2 - \frac{\pi^2}{16}}$ is:

- (a) $\frac{2}{\pi}g(2)$
- (b) $-\frac{4}{\pi}g(2)$ (c) $-\frac{16}{\pi}g(2)$ (d) -4g(2)

- **65.** The value of $\lim_{n\to\infty} \sum_{k=1}^n \frac{n-k}{n^2} \cos \frac{4k}{n}$ equals:
 - (a) $\frac{1}{4}\sin 4 + \frac{1}{16}\cos 4 \frac{1}{16}$
- (b) $\frac{1}{4}\sin 4 \frac{1}{16}\cos 4 + \frac{1}{16}$

(c) $\frac{1}{16}(1-\sin 4)$

- (d) $\frac{1}{16}(1-\cos 4)$
- **66.** For each positive integer n, define a function f_n on [0, 1] as follows:

$$f_n(x) = \begin{cases} 0 & \text{if } x = 0\\ \sin\frac{\pi}{2n} & \text{if } 0 < x \le \frac{1}{n}\\ \sin\frac{2\pi}{2n} & \text{if } \frac{1}{n} < x \le \frac{2}{n}\\ \sin\frac{3\pi}{2n} & \text{if } \frac{2}{n} < x \le \frac{3}{n}\\ \sin\frac{n\pi}{2n} & \text{if } \frac{n-1}{n} < x \le 1 \end{cases}$$

Then the value of $\lim_{n\to\infty} \int_0^x f_n(x) dx$ is:

(a) π

(c) $\frac{1}{\pi}$

(d) $\frac{2}{\pi}$

67. Let n be a positive integer, then

$$\int_{0}^{n+1} \min\{|x-1|, |x-2|, |x-3|, \dots, |x-n|\} dx \text{ equals}$$

- (a) $\frac{(n+1)}{4}$ (b) $\frac{(n+2)}{4}$ (c) $\frac{(n+3)}{4}$

68. For positive integers $k = 1, 2, 3, \ldots, n$, let S_k denotes the area of $\triangle AOB_k$ (where 'O' is origin) such that $\angle AOB_k = \frac{k\pi}{2n}$, OA = 1 and $OB_k = k$. The value of the $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n S_k$ is:

- (d) $\frac{1}{2\pi^2}$

69. If $A = \int_{0}^{1} \prod_{r=1}^{2014} (r-x) dx$ and $B = \int_{0}^{1} \prod_{r=0}^{2013} (r+x) dx$, then:

- (d) A = B

(a) A = 2B (b) 2A = B (c) A + B = 0 **70.** If $f(x) = \left[\frac{x}{120} + \frac{x^3}{30}\right]$ defined in [0, 3], then $\int_{0}^{1} (f(x) + 2) dx = 0$

(where [.] denotes greatest integer function)

- (d) 4

71. If $f(x) = \int_{0}^{g(x)} \frac{dt}{\sqrt{1+t^3}}$, $g(x) = \int_{0}^{\cos x} (1+\sin t)^2 dt$, then the value of $f'(\frac{\pi}{2})$ is equal to :

- (a) 1
- (b) -1
- (d) $\frac{1}{2}$

72. Let $f(x) = \frac{1}{x^2} \int_{0}^{x} (4t^2 - 2f'(t)) dt$, find 9f'(4)

- (a) 16

- (d) 32

73. Evaluate $\lim_{n\to\infty} \left(\frac{1^2}{n^3 + 1^3} + \frac{2^2}{n^3 + 2^3} + \frac{3^2}{n^3 + 3^3} + \dots + \frac{4}{9n} \right)$

- (c) $\frac{\ln 4}{2}$
- (d) $\frac{\ln 6}{3}$

74. The value of $\int_{0}^{2\pi} \cos^{-1} \left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) dx$ is :

- (a) π^2
- (b) $\frac{\pi^2}{2}$
- (c) $2\pi^2$
- (d) π^3

75. Given a function 'g' continuous everywhere such that $\int g(t) dt = 2$ and g(1) = 5.

If $f(x) = \frac{1}{2} \int_{0}^{x} (x-t)^2 g(t) dt$, then the value of f'''(1) - f''(1) is:

- (d) 3

76. If $\int_{0}^{\pi} \frac{x^3 \cos^4 x \sin^2 x}{\pi^2 - 3\pi x + 3x^2} dx = \lambda \int_{0}^{\pi/2} \sin^2 x dx$, then the value of λ is:

- (d) $\frac{\pi}{2}$

77. $\int_{1}^{\sqrt{3}} \left(\frac{1}{2} \frac{d}{dx} \left(\tan^{-1} \frac{2x}{1-x^2} \right) \right) dx$ equals to :

- (b) $-\frac{\pi}{6}$
- (d) None of these

78. Let $y = \{x\}^{[x]}$ then the value of $\int_{0}^{x} y \, dx$ equals to :

(where {·} and [·] denote fractional part and greatest integer function respectively.)

79. $\int_{-x}^{1} \frac{\tan^{-1} x}{x} dx =$

- (a) $\int_{0}^{\pi/4} \frac{\sin x}{x} dx$ (b) $\int_{0}^{\pi/2} \frac{x}{\sin x} dx$ (c) $\frac{1}{2} \int_{0}^{\pi/2} \frac{x}{\sin x} dx$ (d) $\frac{1}{2} \int_{0}^{\pi/4} \frac{x}{\sin x} dx$

80. The value of $\int_{0}^{4/\pi} \left(3x^2 \sin \frac{1}{x} - x \cos \frac{1}{x}\right) dx$ is:

(a) $\frac{8\sqrt{2}}{3}$

(b) $\frac{24\sqrt{2}}{5^3}$

(c) $\frac{32\sqrt{2}}{3}$

(d) None of these

81. The number of values of x satisfying the equation :

$$\int_{-1}^{x} \left(8t^{2} + \frac{28t}{3} + 4\right) dt = \frac{\frac{3}{2}x + 1}{\log_{(x+1)}\sqrt{x+1}}, \text{ is :}$$

- (a) 0
- (b) 1
- (c) 2
- (d) 3

- **82.** $\lim_{n\to\infty} \frac{1+2^4+3^4+\ldots +n^4}{n^5} \lim_{n\to\infty} \frac{1+2^3+3^3+\ldots +n^3}{n^5}$ is:
 - (a) $\frac{1}{30}$
- (b) zero (c) $\frac{1}{4}$

83. The value of $\lim_{x\to 0^+} \frac{\int_{-1}^{\cos x} (\cos^{-1} t) dt}{2x - \sin 2x}$ is equal to:

- (d) $-\frac{1}{4}$

84. Consider a parabola $y = \frac{x^2}{4}$ and the point F(0, 1).

Let $A_1(x_1, y_1), A_2(x_2, y_2), A_3(x_3, y_3), \dots, A_n(x_n, y_n)$ are 'n' points on the parabola such $x_k > 0$ and $\angle OFA_k = \frac{k\pi}{2n} (k = 1, 2, 3, \dots, n)$. Then the value of $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n FA_k$, is equal to:

- (a) $\frac{2}{\pi}$

- (d) None of these

85. The minimum value of $f(x) = \int_{1}^{4} e^{|x-t|} dt$ where $x \in [0, 3]$ is:

- (b) $e^4 1$
- (c) $2(e^2-1)$

86. If $\int_{0}^{\infty} \frac{\cos x}{x} dx = \frac{\pi}{2}$, then $\int_{0}^{\infty} \frac{\cos^3 x}{x} dx$ is equals to :

- (c) π
- (d) $\frac{3\pi}{2}$

87. $\int \sqrt{1+\sin x} \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right) dx = :$

- (a) $\frac{1+\sin x}{2}+C$ (b) $(1+\sin x)^2+C$ (c) $\frac{1}{\sqrt{1+\sin x}}+C$
- (d) $\sin x + C$

88. If $I_n = \int_0^\pi \frac{\sin(2nx)}{\sin 2x} dx$, then the value of $I_{n+\frac{1}{2}}$ is equal to $(n \in I)$:

- (a) $\frac{n\pi}{2}$
- (b) π
- (d) 0

89. The value of function $f(x) = 1 + x + \int_{0}^{x} (\ln^2 t + 2 \ln t) dt$ where f'(x) vanishes is:

- (a) $\frac{1}{e}$
- (b) 0
- (c) $\frac{2}{a}$
- (d) $1 + \frac{2}{}$

90. Let f be a differentiable function on R and satisfies $f(x) = x^2 + \int_0^x e^{-t} f(x-t) dt$; then $\int_0^1 f(x) dx$

is equal to:

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{7}{12}$$
 (d) $\frac{5}{12}$

(d)
$$\frac{5}{12}$$

91. The value of the definite integral $\int_{-(\pi/2)}^{\pi/2} \frac{\cos^2 x}{1+5^x}$ equals to:

(a)
$$\frac{3\pi}{4}$$

(c)
$$\frac{\pi}{2}$$

(d)
$$\frac{\pi}{4}$$

92.
$$\int \left(\frac{x^2 - x + 1}{x^2 + 1}\right) e^{\cot^{-1}(x)} dx = f(x) \cdot e^{\cot^{-1}(x)} + C$$

where C is constant of integration. Then f(x) is equal to :

(b)
$$\sqrt{1-x}$$

(d)
$$\sqrt{1+x}$$

(a)
$$-x$$
 (b) $\sqrt{1-x}$ (c) x
93. $\lim_{n\to\infty} \frac{1}{n^3} (\sqrt{n^2+1} + 2\sqrt{n^2+2^2} + \dots + n\sqrt{(n^2+n^2)}) = :$

(a)
$$\frac{3\sqrt{2}-1}{2}$$

(a)
$$\frac{3\sqrt{2}-1}{2}$$
 (b) $\frac{2\sqrt{2}-1}{3}$ (c) $\frac{3\sqrt{3}-1}{3}$ (d) $\frac{4\sqrt{2}-1}{2}$

(c)
$$\frac{3\sqrt{3}-1}{3}$$

(d)
$$\frac{4\sqrt{2}-1}{2}$$

94.
$$\int \frac{(x^3 - 1)}{(x^4 + 1)(x + 1)} dx$$
, is:

(a)
$$\frac{1}{4}\ln(1+x^4) + \frac{1}{3}\ln(1+x^3) + c$$
 (b) $\frac{1}{4}\ln(1+x^4) - \frac{1}{3}\ln(1+x^3) + c$

(b)
$$\frac{1}{4}\ln(1+x^4) - \frac{1}{3}\ln(1+x^3) + c$$

(c)
$$\frac{1}{4}\ln(1+x^4)-\ln(1+x)+c$$

(d)
$$\frac{1}{4}\ln(1+x^4) + \ln(1+x) + c$$

$$\int_{0}^{\infty} (\cos^{-1} t) dt$$

95. The value of Limit $\int_{x\to 0^+}^{\cos x} (\cos^{-1} t) dt$ is equal to:

(c)
$$\frac{2}{3}$$

(d)
$$\frac{-1}{4}$$

96. Let
$$f(x) = \lim_{n \to \infty} \frac{\cos x}{1 + (\tan^{-1} x)^n}$$
, then $\int_0^\infty f(x) dx = \int_0^\infty f(x) dx$

- (a) tan(sin 1)
- (b) sin(tan 1)
- (c) 0
- (d) $\sin\left(\frac{\tan 1}{2}\right)$

97. The value of
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left(\frac{k}{n^2 + n + 2k}\right) =$$

200	中华美国人	A THE RESERVE THE		THE WAR SEE		Advanced Problem	is in Methamatics for JEE
	(a) $\frac{1}{4}$		(b) $\frac{1}{3}$		(c)	$\frac{1}{2}$	(d) 1
		j. [t	-1 dt				
98.	The val	ue of $\lim_{y\to 1^+} \frac{1}{\tan x}$		is:			
	(a) 0		(b) 1		(c)	2	(d) does not exist
99.	Given	that $\int \frac{dx}{(1+x^2)}$	$\frac{1}{n} = \frac{1}{2(n-1)^n}$	$\frac{x}{(n-1)(1+x^2)^{n-1}}$	$+\frac{(2r+1)^{2}}{2(r+1)^{2}}$	$\frac{(x-3)}{(x-1)}\int \frac{dx}{(1+x^2)^{n-1}}$. Find the value of
				y not use reduction			
	(a) $\frac{11}{48}$	$+\frac{5\pi}{64}$	(b) $\frac{1}{4}$	$\frac{1}{8} + \frac{5\pi}{32}$	(c)	$\frac{1}{24}+\frac{5\pi}{64}$	(d) $\frac{1}{96} + \frac{5\pi}{32}$
100	. Find the	e value of $\int_{0}^{\pi/4} (s)$	in <i>x</i>) ⁴ d	x:			
	(a) $\frac{3\pi}{16}$	v	(b) $\frac{3}{3}$	$\frac{\pi}{2} - \frac{1}{4}$	(c)	$\frac{3\pi}{32} - \frac{3}{4}$	(d) $\frac{3\pi}{16} - \frac{7}{8}$
101	$\int \frac{\cos 9x}{2\cos x}$	$\frac{1+\cos 6x}{\sin 5x-1}dx=1$	A sin 4x	$+B\sin+C$, then A	A + B	is equal to:	
	(Where	C is constant of	of integr	ration)			
	(a) $\frac{1}{2}$		(b) $\frac{3}{4}$		(c)		(d) $\frac{5}{4}$
102.	$\int \frac{dx}{x^{2014}}$	$\frac{1}{x} = \frac{1}{p} \ln \left(\frac{3}{1+x} \right)$	$\left(\frac{x^q}{x^r}\right) + 1$	C where $p, q, r \in I$	V the	n the value of $(p - p)$	+q+r) equals
	(Where	C is constant o	of integr	ration)			
	(a) 603	39	(b) 60	048	(c)	6047	(d) 6021
103.	$\text{If } \int_{0}^{\infty} e^{-x^{2}}$	$dx = a$, then $\int_{0}^{1} x^{2} dx$	$x^2e^{-x^2}d$	lx is equal to			
	(a) $\frac{1}{2e}$	(ea – 1)	(b) $\frac{1}{2e}$	(ea + 1)	(c)	$\frac{1}{e}(ea-1)$	(d) $\frac{1}{e}(ea+1)$
104.	If $f(x)$ is	a continuous f	unction	for all real value	s of x	and satisfies $\int_{1}^{n+1} f$	$(x) dx = \frac{n^2}{2} \forall n \in I, \text{then}$
	5	dx is equal to				n	
	(a) $\frac{19}{2}$		(b) $\frac{35}{2}$	5	(c)	$\frac{17}{2}$	(d) $\frac{37}{2}$

(c) $\frac{17}{2}$ (d) $\frac{37}{2}$

105. If
$$\int \frac{dx}{x^4 (1+x^3)^2} = a \ln \left| \frac{1+x^3}{x^3} \right| + \frac{b}{x^3} + \frac{c}{1+x^3} + d$$
, then

(where d is arbitrary constant)

(a)
$$a = \frac{1}{3}, b = \frac{1}{3}, x = \frac{1}{3}$$

(b)
$$a = \frac{2}{3}, b = -\frac{1}{3}, c = \frac{1}{3}$$

(c)
$$a = \frac{2}{3}, b = -\frac{1}{3}, c = -\frac{1}{3}$$

(d)
$$a = \frac{2}{3}, b = \frac{1}{3}, c = -\frac{1}{3}$$

106.
$$\lim_{n \to \infty} \frac{1}{\sqrt{n}\sqrt{n+1}} + \frac{1}{\sqrt{n}\sqrt{n+2}} + \dots + \frac{1}{\sqrt{n}\sqrt{4n}}$$
 is equal to :

(c)
$$2(\sqrt{2}-1)$$

(d)
$$2\sqrt{2} - 1$$

(a) 2 (b) 4 (c)
$$2(\sqrt{2}-1)$$
 (d) $2\sqrt{2}-1$
107. Let $f(x) = \int_{x}^{2} \frac{dy}{\sqrt{1+y^3}}$. The value of the integral $\int_{0}^{2} xf(x) dx$ is equal to :

(b)
$$\frac{1}{3}$$

(c)
$$\frac{4}{3}$$

(d)
$$\frac{2}{3}$$

108. The value of the definite integral
$$\int_{0}^{\pi/3} \ln(1+\sqrt{3}\tan x) dx$$
 equals

(a)
$$\frac{\pi}{3} \ln 2$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi^2}{6} \ln 2$$
 (d) $\frac{\pi}{2} \ln 2$

(d)
$$\frac{\pi}{2} \ln 2$$

109. If
$$\int_{0}^{100} f(x) dx = a$$
, then $\sum_{r=1}^{100} \int_{0}^{1} (f(r-1+x) dx) =$

110. The value of
$$\int_{0}^{1} \lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^{k+2} 2^k}{k!} dx$$
 is :

(a)
$$e^2 - 1$$
 (b) 2

(c)
$$\frac{e^2-1}{2}$$

(c)
$$\frac{e^2-1}{2}$$
 (d) $\frac{e^2-1}{4}$

111. Evaluate :
$$\int x^5 \sqrt{1 + x^3} \, dx$$
.

(a)
$$\frac{1}{15}(1+x^3)^{5/2} - \frac{1}{9}(1+x)^3)^{3/2} + c$$

(b)
$$\frac{2}{15}(1+x^3)^{5/2} - \frac{1}{9}(1+x^3)^{3/2} + c$$

(c)
$$\frac{2}{15}(1+x^3)^{5/2} - \frac{2}{9}(1+x^3)^{3/2} + c$$

(d)
$$\frac{1}{15}(1+x^3)^{5/2} - \frac{2}{9}(1+x^3)^{3/2} + c$$

- **112.** If $f(x) = \int_{-\infty}^{x} \frac{\sin t}{t} dt$, which of the following is true?
 - (a) $f(0) > f(1 \cdot 1)$
 - (b) $f(0) < f(1 \cdot 1) > f(2 \cdot 1)$
 - (c) $f(0) < f(1 \cdot 1) < f(2 \cdot 1) > f(3 \cdot 1)$
 - (d) $f(0) < f(1 \cdot 1) < f(2 \cdot 1) < f(3 \cdot 1) > f(4 \cdot 1)$
- **113.** Evaluate : $\int \frac{x^3 + 3x^2 + x + 9}{(x^2 + 1)(x^2 + 3)} dx.$
 - (a) $\ln |x^2 + 3| + 3 \tan^{-1} x + c$
- (b) $\frac{1}{2} \ln |x^2 + 3| + \tan^{-1} x + c$
- (c) $\frac{1}{2} \ln |x^2 + 3| + 3 \tan^{-1} x + c$
- (d) $\ln |x^2 + 3| \tan^{-1} x + c$

- 114. $\int \frac{\sqrt{\sec^5 x}}{\sqrt{\sin^3 x}} dx$ equals to:
 - (a) $(\tan x)^{3/2} \sqrt{\tan x} + C$
- (b) $2\left(\frac{1}{3}(\tan x)^{3/2} \frac{1}{\sqrt{\tan x}}\right) + C$
- (c) $\frac{1}{3}(\tan x)^{3/2} \sqrt{\tan x} + C$
- (d) $\sqrt{\sin x} + \sqrt{\cos x} + C$

- 115. $\lim_{x\to 0} \int_{0}^{x} \frac{e^{\sin(tx)}}{x} dt$ equals to :
- (c) e
- (d) Does not exist

- (a) 1 (b) 2 **116.** If $A = \int_{0}^{\pi} \frac{\sin x}{x^2} dx$, then $\int_{0}^{\pi/2} \frac{\cos 2x}{x} dx$ is equal to :

 - (a) 1-A (b) $\frac{3}{2}-A$
- (c) A-1
- (d) 1 + A

1	1	Answers																	
1.	(b)	2.	(b)	3.	(b)	4.	(d)	5.	(d)	6.	(a)	7.	(d)	8.	(d)	9.	(b)	10.	(d)
11.	(b)	12.	(a)	13.	(b)	14.	(b)	15.	(a)	16.	(a)	17.	(b)	18.	(c)	19.	(b)	20.	(a)
21.	(a)	22.	(d)	23.	(b)	24.	(b)	25.	(c)	26.	(d)	27.	(a)	28.	(d)	29.	(d)	30.	(c)
31.	(d)	32.	(b)	33.	(c)	34.	(d)	35.	(c)	36.	(a)	37.	(c)	38.	(a)	39.	(d)	40.	(d)
41.	(ъ)	42.	(a)	43.	(b)	44.	(a)	45.	(a)	46.	(a)	47.	(d)	48.	(d)	49.	(d)	50.	(c)
51.	(c)	52.	(b)	53.	(c)	54.	(c)	55.	(b)	56.	(c)	57.	(b)	58.	(b)	59.	(b)	60.	(a)
61.	(a)	62.	(a)	63.	(b)	64.	(c)	65.	(d)	66.	(d)	67.	(a)	68.	(d)	69.	(d)	70.	(b)
71.	(d)	72.	(b)	73.	(a)	74.	(d)	75.	(b)	76.	(a)	77.	(b)	78.	(c)	79.	(c)	80.	(c)
81.	(ъ)	82.	(d)	83.	(d)	84.	(b)	85.	(c)	86.	(a)	87.	(d)	88.	(d)	89.	(d)	90.	(d)
91.	(d)	92.	(c)	93	(b)	94.	(c)	95.	(d)	96.	(b)	97.	(c)	98.	(a)	99.	(a)	100.	(b)
101.	(d)	102.	(a)	103	(a)	104.	(b)	105.	(c)	106.	(a)	107.	(d)	108.	(a)	109.	(b)	110.	(d)
111.	(c)	112.	(d)	113	(c)	114.	(ъ)	115.	(a)	116.	(c)								

116

Exercise-2: One or More than One Answer is/are Correct

1.
$$\int \frac{dx}{(1+\sqrt{x})^8} = -\frac{1}{3(1+\sqrt{x})^{k_1}} + \frac{2}{7(1+\sqrt{x})^{k_2}} + C$$
, then:

(a)
$$k_1 = 5$$

(b)
$$k_1 = 6$$

(c)
$$k_2 = 7$$

(d)
$$k_2 = 8$$

(a)
$$k_1 = 5$$
 (b) $k_1 = 6$ (c) $k_2 = 7$ (d)
2. If $\int_{-\alpha}^{\alpha} \left(e^x + \cos x \ln\left(x + \sqrt{1 + x^2}\right) \right) dx > \frac{3}{2}$, then possible value of α can be:

(a) 1 (b) 2 (c) 3 (d) 4
3. For
$$a > 0$$
, if $I = \int \sqrt{\frac{x}{a^3 - x^3}} dx = A \sin^{-1} \left(\frac{x^{3/2}}{B} \right) + C$, where C is any arbitrary constant, then:

(a)
$$A = \frac{2}{3}$$

(b)
$$B = a^{3/2}$$

(c)
$$A = \frac{1}{3}$$

(d)
$$B = a^{1/2}$$

4. Let
$$\int x \sin x \cdot \sec^3 x \, dx = \frac{1}{2} (x \cdot f(x) - g(x)) + k$$
, then :

(a)
$$f(x) \notin (-1,1)$$

(b) $g(x) = \sin x \text{ has 6 solution for } x \in [-\pi, 2\pi]$

(c)
$$g'(x) = f(x), \forall x \in R$$

(d) f(x) = g(x) has no solution

5. If
$$\int (\sin 3\theta + \sin \theta) \cos \theta e^{\sin \theta} d\theta = (A \sin^3 \theta + B \cos^2 \theta + C \sin \theta + D \cos \theta + E) e^{\sin \theta} + F$$
, then:

(a)
$$A = -4$$

(b)
$$B = -12$$

(c)
$$C = -20$$

(a)
$$A = -4$$
 (b) $B = -12$ (c) $C = -20$ (d) None of these
6. For $a > 0$, if $I = \int \sqrt{\frac{x}{a^3 - x^3}} dx = A \sin^{-1} \left(\frac{x^{3/2}}{B}\right) + C$, where C is any arbitrary constant, then:

(a)
$$A = \frac{2}{3}$$

(b)
$$B = a^{3/2}$$

(c)
$$A = \frac{1}{3}$$

(d)
$$B = a^{1/2}$$

7. If
$$f(\theta) = \lim_{n \to \infty} \sum_{r=0}^{n\theta} \frac{2r}{n\sqrt{(3\theta n - 2r)(n\theta + 2r)}}$$
 then:

(a)
$$f(1) = \frac{\pi}{6}$$

(b)
$$f(\theta) = \frac{\theta}{2} \int_{0}^{\theta} \frac{dx}{\sqrt{\theta^2 - \left(x - \frac{\theta}{2}\right)^2}}$$

(c)
$$f(\theta)$$
 is a constant function

(d) $y = f(\theta)$ is invertible

8. If
$$f(x+y) = f(x)f(y)$$
 for all x, y and $f(0) \neq 0$, and $F(x) = \frac{f(x)}{1 + (f(x))^2}$ then:

(a)
$$\int_{-2010}^{2011} F(x) dx = \int_{0}^{2011} F(x) dx$$

(b)
$$\int_{-2010}^{2011} F(x) dx - \int_{0}^{2010} F(x) dx = \int_{0}^{2011} F(x) dx$$
(d)
$$\int_{-2010}^{2010} (2F(-x) - F(x)) dx = 2 \int_{0}^{2010} F(x) dx$$

(c)
$$\int_{-2010}^{2011} F(x) dx = 0$$

(d)
$$\int_{-2010}^{2010} (2F(-x) - F(x)) dx = 2 \int_{0}^{2010} F(x) dx$$

9. Let
$$J = \int_{-1}^{2} \left(\cot^{-1} \frac{1}{x} + \cot^{-1} x \right) dx$$
, $K = \int_{-2\pi}^{7\pi} \frac{\sin x}{|\sin x|} dx$. Then which of the following alternative(s)

is/are correct?

(a)
$$2J + 3K = 8\pi$$

(b)
$$4J^2 + K^2 = 26\pi^2$$
 (c) $2J - K = 3\pi$ (d) $\frac{J}{K} = \frac{2}{5}$

(c)
$$2J - K = 3\pi$$

$$(d) \frac{J}{K} = \frac{2}{5}$$

10. Which of the following function(s) is/are even?

(a)
$$f(x) = \int_{0}^{x} \ln\left(t + \sqrt{1 + t^2}\right) dt$$
 (b) $g(x) = \int_{0}^{x} \frac{(2^t + 1)t}{2^t - 1} dt$

(b)
$$g(x) = \int_{0}^{x} \frac{(2^{t} + 1)t}{2^{t} - 1} dt$$

(c)
$$h(x) = \int_{0}^{x} \left(\sqrt{1+t+t^2} - \sqrt{1-t+t^2} \right) dt$$
 (d) $l(x) = \int_{0}^{x} \ln\left(\frac{1-t}{1+t}\right) dt$

(d)
$$l(x) = \int_{0}^{x} \ln\left(\frac{1-t}{1+t}\right) dt$$

11. Let
$$l_1 = \lim_{x \to \infty} \sqrt{\frac{x - \cos^2 x}{x + \sin x}}$$
 and $l_2 = \lim_{h \to 0^+} \int_{-1}^1 \frac{h dx}{h^2 + x^2}$. Then:

- (a) Both l_1 and l_2 are less than 22/7
- (b) One of the two limits is rational and other irrational
- (c) $l_2 > l_1$
- (d) l_2 is greater than 3 times of l_1

12. For
$$a > 0$$
, if $I = \int \sqrt{\frac{x}{a^3 - x^3}} dx = A \sin^{-1} \left(\frac{x^{3/2}}{B} \right) + C$, where C is any arbitrary constant, then:

(a)
$$A = \frac{2}{3}$$

(b)
$$B = a^{3/2}$$

(c)
$$A = \frac{1}{3}$$

(b)
$$B = a^{3/2}$$
 (c) $A = \frac{1}{3}$ (d) $B = a^{1/2}$

13. If
$$\int \frac{dx}{1-\sin^4 x} = a \tan x + b \tan^{-1}(c \tan x) + D$$
, then:

(a)
$$a = \frac{1}{2}$$

(b)
$$b = \sqrt{2}$$

(c)
$$c = \sqrt{2}$$

(b)
$$b = \sqrt{2}$$
 (c) $c = \sqrt{2}$ (d) $b = \frac{1}{2\sqrt{2}}$

14. The value of definite integral:

$$\int_{-2014}^{2014} \frac{dx}{1 + \sin^{2015}(x) + \sqrt{1 + \sin^{4030}(x)}}$$
 equals :

- (a) 0
- (c) $(2014)^2$
- (d) 4028

15. Let
$$L = \lim_{n \to \infty} \int_{a}^{\infty} \frac{n \ dx}{1 + n^2 x^2}$$
 where $a \in R$ then L can be:

- (a) π
- (b) $\frac{\pi}{2}$
- (c) 0
- (d) $\frac{\pi}{3}$

16. Let
$$I = \int_{0}^{1} \sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} dx$$
 and $J = \int_{0}^{1} \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx$ then correct statement(s) is/are:

(a) $I + J = 2$

(b) $I - J = \pi$

(c) $I = \frac{2+\pi}{2}$

(d) $J = \frac{4-\pi}{2}$

(a)
$$I + J = 2$$

(b)
$$I - J = \pi$$

(c)
$$I = \frac{2+1}{2}$$

$$(d) J = \frac{4-\pi}{2}$$

1					Ans	wer	8				
1.	(b, c)	2.	(a, b, c, d)	3.	(a, b)	4.	(a, c, d)	5.	(a, b, c)	6.	(a, b)
7.	(a, b, d)	8.	(b, d)	9.	(a, b)	10.	(a, b, c, d)	11.	(a, b, c, d)	12.	(a, b)
13.	(a, c)	14.	(b)	15.	(a, b, c)	16.	(b, c)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $f(x) = \int x^2 \cos^2 x (2x + 6\tan x - 2x \tan^2 x) dx$ and f(x) passes through the point $(\pi, 0)$

- 1. If $f: R-(2n+1)\frac{\pi}{2} \longrightarrow R$ then f(x) be a:
 - (a) even function

(b) odd function

(c) neither even nor odd

- (d) even as well as odd both
- **2.** The number of solution(s) of the equation $f(x) = x^3$ in $[0, 2\pi]$ be:
 - (a) 0
- (b) 3
- (d) None of these

Paragraph for Question Nos. 3 to 4

Let f(x) be a twice differentiable function defined on $(-\infty, \infty)$ such that f(x) = f(2-x) and $f'\left(\frac{1}{2}\right) = f'\left(\frac{1}{4}\right) = 0$. Then

- **3.** The minimum number of values where f''(x) vanishes on [0, 2] is:

- (d) 5

- (d) 0
- 4. $\int_{-1}^{1} f'(1+x) x^{2} e^{x^{2}} dx \text{ is equal to :}$ (a) 1 (b) π (c)
 5. $\int_{0}^{1} f(1-t) e^{-\cos \pi t} dt \int_{1}^{2} f(2-t) e^{\cos \pi t} dt \text{ is equal to :}$
 - (a) $\int_{0}^{2} f'(t) e^{\cos \pi t} dt$ (b) 1
- (c) 2
- (d) π

Paragraph for Question Nos. 6 to 8

Consider the function f(x) and g(x), both defined from $R \to R$

$$f(x) = \frac{x^3}{2} + 1 - x \int_0^x g(t) dt$$
 and $g(x) = x - \int_0^1 f(t) dt$, then

- **6.** Minimum value of f(x) is:
 - (a) 0
- (b) 1
- (c) $\frac{3}{2}$
- (d) Does not exist

7. The number of points of intersection of f(x) and g(x) is/are:

8. The area bounded by g(x) with co-ordinate axes is (in square units):

(a)
$$\frac{9}{4}$$

(b)
$$\frac{9}{2}$$

(c)
$$\frac{9}{8}$$

Paragraph for Question Nos. 9 to 11

Let f(x) be function defined on [0, 1] such that f(1) = 0 and for any $a \in (0, 1]$, $\int_{0}^{a} f(x) dx - \int_{0}^{a} f(x) dx = 2 f(a) + 3a + b \text{ where } b \text{ is constant.}$

(a)
$$\frac{3}{2e} - 3$$

(b)
$$\frac{3}{2e} - \frac{3}{2}$$
 (c) $\frac{3}{2e} + 3$ (d) $\frac{3}{2e} + \frac{3}{2}$

(c)
$$\frac{3}{2e} + 3$$

(d)
$$\frac{3}{2e} + \frac{3}{2}$$

10. The length of the subtangent of the curve y = f(x) at x = 1/2 is :

(a)
$$\sqrt{e}-1$$

(b)
$$\frac{\sqrt{e}-1}{2}$$
 (c) $\sqrt{e}+1$ (d) $\frac{\sqrt{e}+1}{2}$

(c)
$$\sqrt{e} + 1$$

(d)
$$\frac{\sqrt{e}+1}{2}$$

$$\mathbf{11.} \int\limits_0^1 f(x) \, dx =$$

(a)
$$\frac{1}{e}$$

(b)
$$\frac{1}{2e}$$

(c)
$$\frac{3}{2e}$$

(d)
$$\frac{2}{e}$$

Paragraph for Question Nos. 12 to 13

Let $f_0(x) = \ln x$ and for $n \ge 0$ and x > 0

Let
$$f_{n+1}(x) = \int_{0}^{x} f_n(t)dt$$
 then;

12. $f_3(x)$ equals:

(a)
$$\frac{x^3}{3} \left(lnx - \frac{5}{6} \right)$$

(b)
$$\frac{x^3}{3} \left(lnx - \frac{11}{6} \right)$$

(a)
$$\frac{x^3}{3} \left(lnx - \frac{5}{6} \right)$$
 (b) $\frac{x^3}{3} \left(lnx - \frac{11}{6} \right)$ (c) $\frac{x^3}{\frac{3}{2}} \left(lnx - \frac{11}{6} \right)$ (d) $\frac{x^3}{\frac{3}{2}} \left(lnx - \frac{5}{6} \right)$

(d)
$$\frac{x^3}{3} \left(lnx - \frac{5}{6} \right)$$

13. Value of $\lim_{n\to\infty} \frac{(\lfloor n \rfloor) f_n(1)}{\ln(n)}$:

Paragraph for Question Nos. 14 to 15

Let $f: R \to \begin{bmatrix} \frac{3}{4}, \infty \end{bmatrix}$ be a surjective quadratic function with line of symmetry 2x - 1 = 0 and

- **14.** If $g(x) = \frac{f(x) + f(-x)}{2}$ then $\int \frac{dx}{\sqrt{g(e^x) 2}}$ is equal to :
 - (a) $\sec^{-1}(e^{-x}) + C$ (b) $\sec^{-1}(e^x) + C$ (c) $\sin^{-1}(e^{-x}) + C$ (d) $\sin^{-1}(e^x) + C$

(Where C is constant of integration)

- 15. $\int \frac{e^x}{f(e^x)} dx$
 - (a) $\cot^{-1}\left(\frac{2e^x-1}{\sqrt{3}}\right)+C$

(b) $\frac{2}{\sqrt{3}} \cot^{-1} \left(\frac{2e^x + 1}{\sqrt{3}} \right) + C$

(c) $\tan^{-1}\left(\frac{2e^x+1}{\sqrt{3}}\right)+C$

(d) $\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2e^x - 1}{\sqrt{3}} \right) + C$

Paragraph for Question Nos. 16 to 17

Let $g(x) = x^C e^{Cx}$ and $f(x) = \int_0^x te^{2t} (1 + 3t^2)^{1/2} dt$. If $L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ is non-zero finite number then:

- **16.** The value of *C* is :
 - (a) 7
- (b) $\frac{3}{2}$
- (c) 2
- (d) 3

- **17.** The value of *L* is :
 - (a) $\frac{2}{7}$
- (b) $\frac{1}{2}$
- (c) $\frac{\sqrt{3}}{4}$
- (d) $\frac{\sqrt{3}}{2}$

Answers

				THE RESERVE				Extrem 10		150750066		-			-					
1.	(a)	2.	(b)	3.	(c)	4.	(d)	5.	(a)	6.	(b)	7.	(a)	8.	(c)	9.	(a)	10.	(a)	
11.	(c)	12.	(c)	13.	(c)	14.	(b)	15.	(d)	16.	(c)	17.	(d)							

Exercise-4: Matching Type Problems

1.

	Column-l		Column-II
(A)	$\lim_{n \to \infty} 4 \left[\frac{\frac{1}{e^n}}{n^2} + \frac{2}{n^2} e^{\frac{2}{n}} + \frac{3}{n^2} e^{\frac{3}{n}} + \dots + \frac{1}{n} e \right] =$	(P)	0
(B)	$\int_{0}^{1} \ln\left(\frac{1}{x} - 1\right) dx =$	(Q)	1
(C)	$\int_{0}^{10\pi} \left(\lim_{x \to y} \left(\frac{\sin x - \sin y}{x - y} \right) \right) dy =$	(R)	2
(D)	$\int_{0}^{\infty} \frac{\ln\left(x + \frac{1}{x}\right) dx}{(1 + x^{2})} = \frac{\pi}{2} \ln a, \text{ then } a =$	(s)	4
		(T)	5

2. Match the following $\int f(x) dx$ is equal to, if

	Column-l	1	Column-II
(A)	$f(x) = \frac{1}{(x^2 + 1)\sqrt{x^2 + 2}}$	(P)	$\frac{x^5}{5(1-x^4)^{5/2}} + C$
(B)	$f(x) = \frac{1}{(x+2)\sqrt{x^2+6x+7}}$	(Q)	$\sin^{-1}\left(\frac{x+1}{(x+2)\sqrt{2}}\right) + C$
(C)	$f(x) = \frac{x^4 + x^8}{(1 - x^4)^{7/2}}$	(R)	$(\sqrt{x}-2)\sqrt{1-x}+\cos^{-1}\sqrt{x}+C$
(D)	$f(x) = \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}}$	(S)	$-\tan^{-1}\sqrt{1+\frac{2}{x^2}}+C$
		(T)	$\frac{x^6}{6(1-x^4)^{5/2}} + C$

3.

	Column		Column-II
(A)	$\int_{0}^{\pi/2} \frac{\cos x}{(1+\sin x)(2+\sin x)} dx =$	(P)	$\frac{\pi}{6}$
(B)	$\int_{0}^{\frac{41\pi}{4}} \cos x dx =$	(Q)	$20+\frac{1}{\sqrt{2}}$
(C)	$\int_{-1/2}^{1/2} \left([x] + \ln\left(\frac{1+x}{1-x}\right) \right) dx =$	(R)	ln 4 – ln 3
(D)	where [·] greatest integer function $\int_{0}^{\pi/2} \frac{2\sqrt{\cos\theta}}{3(\sqrt{\sin\theta} + \sqrt{\cos\theta})} d\theta =$	(S)	$-\frac{1}{2}$

4.

	Column-I		Column-II
(A)	If quardratic equation $3x^2 + ax + 1 = 0$ and $2x^2 + bx + 1 = 0$ have a common root then value of $5ab - 2a^2 - 3b^2 =$	(P)	6
(B)	Number of solution of $x^4 - 2x^2 \sin^2 \frac{\pi x}{2} + 1 = 0$	(Q)	1
	is/are		
(C)	Number of points of discontinuity $y = \frac{1}{u^2 + u - 2}$	(R)	2
	where $u = \frac{1}{x-1}$ is/are		
(D)	$\int \frac{dx}{\sqrt[3]{x^{5/2}(1+x)^{7/2}}} = A\left(\frac{x+1}{x}\right)^{-1/A} + C$	(S)	3
	(Where C is integration constant), then $A =$		

5. :

		Vision	Columnil
(A)	$\int_{0}^{1.5} [x^2] dx$	(P)	-π
(B)	$\int_{0}^{4} {\sqrt{x}} dx$	(Q)	4 (√2 − 1)
	where $\{x\}$ denotes the fractional part of x		
(C)	$\int_{0}^{2\pi} [\sin x + \cos x] dx$	(R)	7/3
(D)	$\int_{0}^{\pi} \sin x - \cos x dx$	(S)	2-√2

Answers

- 1. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow P$; $D \rightarrow S$
- 2. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$
- 3. $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow S$; $D \rightarrow P$
- 4. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$
- **5.** $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$

Exercise-5 : Subjective Type Problems

1.
$$\int \frac{x + (\arccos 3x)^2}{\sqrt{1 - 9x^2}} dx = \frac{1}{k_1} \left(\sqrt{1 - 9x^2} + (\cos^{-1} 3x)^{k_2} \right) + C$$
, then $k_1^2 + k_2^2 =$

(where C is an arbitrary constant.)

2. If
$$\int_{0}^{\infty} \frac{x^3}{(a^2 + x^2)^5} dx = \frac{1}{ka^6}$$
, then find the value of $\frac{k}{8}$.

3. Let
$$f(x) = x \cos x$$
; $x \in \left[\frac{3\pi}{2}, 2\pi\right]$ and $g(x)$ be its inverse. If $\int_{0}^{2\pi} g(x) dx = \alpha \pi^{2} + \beta \pi + \gamma$, where α, β and $\gamma \in R$, then find the value of $2(\alpha + \beta + \gamma)$.

4. If
$$\int (x^6 + x^4 + x^2)\sqrt{2x^4 + 3x^2 + 6} \ dx = \frac{(\alpha x^6 + \beta x^4 + \gamma x^2)^{3/2}}{18} + C$$
 where C is constant, then find the value of $(\beta + \gamma - \alpha)$.

5. If the value of the definite integral
$$\int_{-1}^{1} \cot^{-1} \left(\frac{1}{\sqrt{1-x^2}} \right) \cdot \left(\cot^{-1} \frac{x}{\sqrt{1-(x^2)^{|x|}}} \right) dx = \frac{\pi^2(\sqrt{a}-\sqrt{b})}{\sqrt{c}}$$

where $a, b, c, \in N$ in their lowest from, then find the value of (a + b + c).

6. The value of
$$\int \frac{\tan x}{\tan^2 x + \tan x + 1} dx = x - \frac{2}{\sqrt{A}} \tan^{-1} \left(\frac{2 \tan x + 1}{\sqrt{A}} \right) + C$$

Then the value of A is

7. Let
$$\int_{0}^{1} \frac{4x^{3} (1 + (x^{4})^{2010})}{(1 + x^{4})^{2012}} dx = \frac{\lambda}{\mu}$$

where λ and μ are relatively prime positive integers. Find unit digit of μ .

8. Let
$$\int_{1}^{\sqrt{3}} \left(x^{2x^2+1} + \ln(x^{2x^{2x^2+1}}) \right) dx = N$$
. Find the value of $(N-6)$.

9. If
$$\int \frac{dx}{\cos^3 x - \sin^3 x} = A \tan^{-1}(f(x)) + B \ln \left| \frac{\sqrt{2} + f(x)}{\sqrt{2} - f(x)} \right| + C$$
 where $f(x) = \sin x + \cos x$ find the value of $(12A + 9\sqrt{2}B) - 3$.

10. Find the value of |a| for which the area of triangle included between the coordinate axes and any tangent to the curve $x^a y = \lambda^a$ is constant (where λ is constant.)

11. Let
$$I = \int_{0}^{\pi} x^{6} (\pi - x)^{8} dx$$
, then $\frac{\pi^{15}}{(^{15}C_{9})I} =$

- **12.** If maximum value of $\int_{0}^{1} (f(x))^{3} dx$ under the condition $-1 \le f(x) \le 1$; $\int_{0}^{1} f(x) dx = 0$ is $\frac{p}{q}$ (where p and q are relatively prime positive integers.). Find p + q.
- **13.** Let a differentiable function f(x) satisfies $f(x) \cdot f'(-x) = f(-x) \cdot f'(x)$ and f(0) = 1. Find the value of $\int_{-2}^{2} \frac{dx}{1 + f(x)}$.
- **14.** If $\{x\}$ denotes the fractional part of x, then $I = \int_{0}^{100} \{\sqrt{x}\} dx$, then the value of $\frac{9I}{155}$ is :
- **15.** Let $I_n = \int_0^\pi \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\left(\frac{x}{2}\right)} dx$ where $n \in W$. If $I_1^2 + I_2^2 + I_3^2 + \dots + I_{20}^2 = m\pi^2$, then find the

largest prime factor of m.

- **16.** If M be the maximum value of $72 \int_0^y \sqrt{x^4 + (y y^2)^2} dx$ for $y \in [0, 1]$, then find $\frac{M}{6}$.
- **17.** Find the number of points where $f(\theta) = \int_{-1}^{1} \frac{\sin \theta \, dx}{1 2x \cos \theta + x^2}$ is discontinuous where $\theta \in [0, 2\pi]$.
- **18.** Find the value of $\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \right)$.
- **19.** The maximum value of $\int_{-\pi/2}^{3\pi/2} \sin x \cdot f(x) dx$, subject to the condition $|f(x)| \le 5$ is M, then $\frac{M}{10}$ is equal to:
- **20.** Given a function g, continuous everywhere such that g(1) = 5 and $\int_{0}^{1} g(t) dt = 2$. If $f(x) = \frac{1}{2} \int_{0}^{x} (x-t)^{2} g(t) dt$, then find the value of f'''(1) + f''(1).
- **21.** If $f(n) = \frac{1}{\pi} \int_{0}^{\pi/2} \frac{\sin^2(n\theta) d\theta}{\sin^2 \theta}$, $n \in \mathbb{N}$, then evaluate $\frac{f(15) + f(3)}{f(12) f(10)}$.
- 22. Let f(2-x) = f(2+x) and f(4-x) = f(4+x). Function f(x) satisfies $\int_{0}^{2} f(x) dx = 5$. If $\int_{0}^{50} f(x) dx = I$. Find $[\sqrt{I} - 3]$. (where $[\cdot]$ denotes greatest integer function.)

23. Let
$$I_n = \int_{-1}^{1} |x| \left(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^{2n}}{2n} \right) dx$$
. If $\lim_{n \to \infty} I_n$ can be expressed as rational $\frac{p}{q}$ in its lowest form, then find the value of $\frac{pq(p+q)}{10}$.

24. Let
$$\lim_{n\to\infty} n^{-\frac{1}{2}\left(1+\frac{1}{n}\right)} \cdot (1^1 \cdot 2^2 \cdot 3^3 \cdot \dots \cdot n^n)^{\frac{1}{n^2}} = e^{\frac{-p}{q}}$$

where
$$p$$
 and q are relative prime positive integers. Find the value of $|p+q|$.
25. If $\int_{a}^{b} |\sin x| dx = 8$ and $\int_{0}^{a+b} |\cos x| dx = 9$ then the value of $\frac{1}{\sqrt{2}x} \left| \int_{a}^{b} x \sin x dx \right|$ is:

26. If f(x), g(x), h(x) and $\phi(x)$ are polynomial in x,

$$\left(\int_{1}^{x} f(x) h(x) dx\right) \left(\int_{1}^{x} g(x) \phi(x) dx\right) - \left(\int_{1}^{x} f(x) \phi(x) dx\right) \left(\int_{1}^{x} g(x) h(x) dx\right)$$

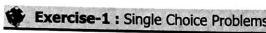
is divisible by $(x-1)^{\lambda}$. Find maximum value of λ .

27. If
$$\int_{0}^{2} (3x^2 - 3x + 1)\cos(x^3 - 3x^2 + 4x - 2)dx = a\sin(b)$$
, where *a* and *b* are positive integers. Find the value of $(a + b)$.

28. let
$$f(x) = \int_{0}^{x} e^{x-y} f'(y) dy - (x^2 - x + 1) e^x$$

Find the number of roots of the equation f(x) = 0.

29. For a positive integer
$$n$$
, let $I_n = \int_{-\pi}^{\pi} \left(\frac{\pi}{2} - |x|\right) \cos nx \, dx$


Find the value of $[I_1 + I_2 + I_3 + I_4]$ where $[\cdot]$ denotes greatest integer function.

						Ansv	vers						1
1.	90	2.	3	3.	3	4.	7	5.	7	6.	3	7.	
8.	7	9.	8	10.	1	11.	9	12.	5	13.	2	14.	3
15.	5	16.	4	17.	3	18.	2	19.	2	20.	7	21.	ç
22.	8	23.	3	24.	5	25.	2	26.	4	27.	2	28.	1
29.	4												

Chapter 6 - Area Under Curves

AREA UNDER CURVES

•	Exe	ercise-1 : Single	Choice Problems			344
1.		e area enclosed by $x + 3y$] = $[x - 2]$ w				œ.
			atest integer function.)			
	(a)	^	(b) $\frac{1}{3}$	(c)	$\frac{1}{4}$	(d) 1
2.	The	area of region en	closed by the curves $y = 1$	x ² aı	and $y = \sqrt{ x }$ is:	
	(a)	1	(b) $\frac{2}{3}$		$\frac{4}{3}$	(d) $\frac{16}{3}$
3.	Are	a enclosed by the	figure described by the ed	quati	on $x^4 + 1 = 2x^2 +$	y^2 , is:
	(a)		(b) $\frac{16}{3}$	(c)	0	(d) $\frac{4}{3}$
4.	The	area defined by 3	$ x \le e^{- x } - \frac{1}{2}$ in cartesian	co-o	rdinate system, is :	
			(b) $(4-\ln 2)$	(c)	$(2-\ln 2)$	(d) $(2-2\ln 2)$
5.	For	each positive integ	$ger n > 1; A_n represents the$	he ar	ea of the region re	stricted to the followin
	two	inequalities: $\frac{x^2}{n^2}$	$+y^2 \le 1 \text{ and } x^2 + \frac{y^2}{n^2} \le 1$. Fin	d $\lim_{n\to\infty} A_n$.	
	(a)		(b) 1	(c)	2	(d) 3
5.	The $x = \frac{1}{2}$	ratio in which the	e area bounded by curve	s y ²	$= 12x \text{ and } x^2 = 12$	2y is divided by the lin
	(a)	7:15	(b) 15:49	(c)	1:3	(d) 17:49
7.	The	value of positive	real parameter 'a' suc	h th	at area of rocion	hounded by parabols
	y =	$x-ax^2$, $ay=x^2$ as	ttains its maximum value	e is e	qual to :	bounded by paraboli
	(a)		(b) 2	(c)	1	(d) 1

4rea	Under Curves				129						
8.	For $0 < r < 1$, let n_r denotes	es the line that is norm	al to	the curve $y = x^r$	at the point $(1, 1)$. Let S_r						
	denotes the region in the	first quadrant bounded	l by t	the curve $y = x^r$; the	he x-axis and the line n_r .						
	Then the value of r that										
		o) $\sqrt{2}-1$			(d) $\sqrt{2} - \frac{1}{2}$						
9.	The area bounded by $ x $	$= 1 - y^2$ and $ x + y =$	1 is	:							
	(a) $\frac{1}{3}$ (1)				(d) 1						
10.	Point A lies on curve y	$=e^{-x^2}$ and has the o	coord	linate (x, e^{-x^2}) w	here $x > 0$. Point B has						
	coordinates (x, 0). If 'O'										
	(a) $\frac{1}{\sqrt{8e}}$										
11.	The area enclosed between	en the curves $y = ax^2$	and :	$x = ay^{2} (a > 0)$ is 1	sq. unit, then the value						
	of a is:										
	(a) $\frac{1}{\sqrt{3}}$	b) $\frac{1}{2}$	(c)	1	(d) $\frac{1}{3}$						
12.	Let $f(x) = x^3 - 3x^2 + 3x^2$	x+1 and g be the inv	erse	of it; then area	bounded by the curve						
	y = g(x) with x-axis between $x = 1$ to $x = 2$ is (in square units):										
	(a) $\frac{1}{2}$	p) $\frac{1}{4}$	(c)	$\frac{3}{4}$	(d) 1						

13. Area bounded by $x^2y^2 + y^4 - x^2 - 5y^2 + 4 = 0$ is equal to :

(a)
$$\frac{4\pi}{3} + \sqrt{2}$$

(b)
$$\frac{4\pi}{3} - \sqrt{2}$$

(a)
$$\frac{4\pi}{3} + \sqrt{2}$$
 (b) $\frac{4\pi}{3} - \sqrt{2}$ (c) $\frac{4\pi}{3} + 2\sqrt{3}$

(d) none of these

14. Let $f: \mathbb{R}^+ \to \mathbb{R}^+$ is an invertible function such that f'(x) > 0 and $f''(x) > 0 \ \forall \ x \in [1, 5]$. If f(1) = 1 and f(5) = 5 and area bounded by y = f(x), x-axis, x = 1 and x = 5 is 8 sq. units. Then the area bounded by $y = f^{-1}(x)$, x-axis, x = 1 and x = 5 is:

- (b) 16
- (d) 20

15. A circle centered at origin and having radius π units is divided by the curve $y = \sin x$ in two parts. Then area of the upper part equals to :

- (d) $\frac{\pi^3}{2}$

16. The area of the loop formed by $y^2 = x(1-x^3)dx$ is:

(a) $\int_{0}^{1} \sqrt{x-x^{4}} dx$

(b) $2\int_{0}^{1} \sqrt{x-x^4} dx$

(c) $\int_{-1}^{1} \sqrt{x-x^4} \ dx$

(d) $4 \int_0^{1/2} \sqrt{x-x^4} dx$

17. If $f(x) = \min \left[x^2, \sin \frac{x}{2}, (x - 2\pi)^2 \right]$, the area bounded by the curve y = f(x), x-axis, x = 0 and $x = 2\pi$ is given by

(**Note**: x_1 is the point of intersection of the curves x^2 and $\sin \frac{x}{2}$; x_2 is the point of intersection of the curves $\sin \frac{x}{2}$ and $(x - 2\pi)^2$)

(a)
$$\int_{0}^{x_{1}} \left(\sin \frac{x}{2} \right) dx + \int_{x_{1}}^{\pi} x^{2} dx + \int_{\pi}^{x_{2}} (x - 2\pi)^{2} dx + \int_{x_{2}}^{2\pi} \left(\sin \frac{x}{2} \right) dx$$

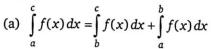
(b)
$$\int_{0}^{x_1} x^2 dx + \int_{x_1}^{x_2} \left(\sin \frac{x}{2} \right) dx + \int_{x_2}^{2\pi} (x - 2\pi)^2 dx$$
, where $x_1 \in \left(0, \frac{\pi}{3} \right)$ and $x_2 \in \left(\frac{5\pi}{3}, 2\pi \right)$

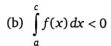
(c)
$$\int_{0}^{x_1} x^2 dx + \int_{x_1}^{x_2} \sin\left(\frac{x}{2}\right) dx + \int_{x_2}^{2\pi} (x - 2\pi)^2 dx$$
, where $x_1 \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ and $x_2 \in \left(\frac{3\pi}{2}, 2\pi\right)$

(d)
$$\int_{0}^{x_1} x^2 dx + \int_{x_1}^{x_2} \sin\left(\frac{x}{2}\right) dx + \int_{x_2}^{2\pi} (x - 2\pi)^2 dx$$
, where $x_1 \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $x_2 \in (\pi, 2\pi)$

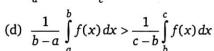
18. The area enclosed between the curves $|x|+|y| \ge 2$ and $y^2 = 4\left(1-\frac{x^2}{9}\right)$ is:

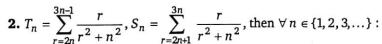
(a)
$$(6\pi - 4) sq$$
. units (b) $(6\pi - 8) sq$. units (c) $(3\pi - 4) sq$. units (d) $(3\pi - 2) sq$. units

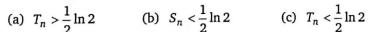

Answers


					552 X 15 1		6. (b)	NAME AND ADDRESS OF THE OWNER, TH		8.		(c)	10.	(a)
11. (d)	12. (b)	13. (c)	14.	(b)	15.	(c)	16. (b)	17.	(b)	18.	(b)			

Exercise-2: One or More than One Answer is/are Correct




1. Let f(x) be a polynomial function of degree 3 where a < b < c and f(a) = f(b) = f(c). If the graph of f(x) is as shown, which of the following statements are **INCORRECT**? (Where



(c)
$$\int_{a}^{b} f(x) dx < \int_{a}^{b} f(x) dx$$

(b)
$$S_n < \frac{1}{2} \ln 2$$

(c)
$$T_n < \frac{1}{2} \ln 2$$

(d)
$$S_n > \frac{1}{2} \ln 2$$

- **3.** If a curve $y = a\sqrt{x} + bx$ passes through point (1, 2) and the area bounded by curve, line x = 4and x-axis is 8, then:
 - (a) a = 3
- (b) b = 3
- (c) a = -1
- (d) b = -1
- **4.** Area enclosed by the curves $y = x^2 + 1$ and a normal drawn to it with gradient –1; is equal to :
 - (a) $\frac{2}{3}$
- (c) $\frac{3}{4}$
- (d) $\frac{4}{3}$

Answers

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $f: A \to B$ $f(x) = \frac{x+a}{bx^2+cx+2}$, where A represent domain set and B represent range set of

function f(x), $a, b, c \in R$, f(-1) = 0 and y = 1 is an asymptote of y = f(x) and y = g(x) is the inverse of f(x).

- **1.** g(0) is equal to:
 - (a) -1
- (b) -3
- (c) $-\frac{5}{2}$
- (d) $-\frac{3}{2}$
- **2.** Area bounded between the curves y = f(x) and y = g(x) is :
 - (a) $2\sqrt{5} + \ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$

(b) $3\sqrt{5} + 2\ln\left(\frac{3+\sqrt{5}}{3-\sqrt{5}}\right)$

(c) $3\sqrt{5} + 4\ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$

- (d) $3\sqrt{5} + 2\ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$
- **3.** Area of region enclosed by asymptotes of curves y = f(x) and y = g(x) is:
 - (a) 4
- (c) 12
- (d) 25

Paragraph for Question Nos. 4 to 6

For j = 0, 1, 2, ... n let S_j be the area of region bounded by the x-axis and the curve $ye^x = \sin x$ for $j\pi \le x \le (j+1)\pi$

- **4.** The value of S_0 is:

- (a) $\frac{1}{2}(1+e^{\pi})$ (b) $\frac{1}{2}(1+e^{-\pi})$ (c) $\frac{1}{2}(1-e^{-\pi})$ (d) $\frac{1}{2}(e^{\pi}-1)$
- **5.** The ratio $\frac{S_{2009}}{S_{2010}}$ equals :
 - (a) $e^{-\pi}$
- (b) e^{π}
- (c) $\frac{1}{2}e^{\pi}$
- (d) $2e^{\pi}$

- **6.** The value of $\sum_{j=0}^{\infty} S_j$ equals to :
 - (a) $\frac{e^{\pi} (1+e^{\pi})}{2(e^{\pi}-1)}$ (b) $\frac{1+e^{\pi}}{2(e^{\pi}-1)}$ (c) $\frac{1+e^{\pi}}{e^{\pi}-1}$
- (d) $\frac{e^{\pi} (1 + e^{\pi})}{(e^{\pi} 1)}$

Answers

2. (d) 3. (b) 1. (a) 4. (b) 5. (b) 6. (b)

Exercise-4: Matching Type Problems

1.

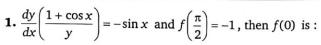
	Column-I			Column-II	
(A)	Area of region formed by points (x, y) satisfying $[x]^2 = [y]^2$ for $0 \le x \le 4$ is equal to (where [] denotes greatest integer function)	(P)		48	
(B)	The area of region formed by points (x, y) satisfying $x + y \le 6$, $x^2 + y^2 \le 6y$ and $y^2 \le 8x$ is $\frac{k\pi - 2}{12}$, then $k =$	(Q)	lo-	27	
(C)	The area in the first quardant bounded by the curve $y = \sin x$ and the line $\frac{2y-1}{\sqrt{2}-1} = \frac{2}{\pi} (6x - \pi) \text{ is } \left[\frac{\sqrt{3} - \sqrt{2}}{2} - \frac{(\sqrt{2} + 1)\pi}{k} \right], \text{ then } k = $			7	
(D)	If the area bounded by the graph of $y = xe^{-ax}$ $(a > 0)$ and the abscissa axis is $\frac{1}{9}$ then the value of 'a' is equal to	(S)		4	
	MG 25.24 (16.4)	(T)		3	

Answers

1. $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow T$

Exercise-5: Subjective Type Problems

- **1.** Let f be a differentiable function satisfying the condition $f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)} (y \neq 0, f(y) \neq 0)$ $\forall x, y \in R \text{ and } f'(1) = 2$. If the smaller area enclosed by y = f(x), $x^2 + y^2 = 2$ is A, then find [A], where $[\cdot]$ represents the greatest integer function.
- **2.** Let f(x) be a function which satisfy the equation f(xy) = f(x) + f(y) for all x > 0, y > 0 such that f'(1) = 2. Let A be the area of the region bounded by the curves y = f(x), $y = |x^3 6x^2 + 11x 6|$ and x = 0, then find value of $\frac{28}{17}A$.
- **3.** If the area bounded by circle $x^2 + y^2 = 4$, the parabola $y = x^2 + x + 1$ and the curve $y = \left[\sin^2\frac{x}{4} + \cos\frac{x}{4}\right]$, (where [] denotes the greates integer function) and x-axis is $\left(\sqrt{3} + \frac{2\pi}{3} \frac{1}{k}\right)$, then the numerical quantity k should be:
- **4.** Let the function $f: [-4, 4] \rightarrow [-1, 1]$ be defined implicitly by the equation $x + 5y y^5 = 0$. If the area of triangle formed by tangent and normal to f(x) at x = 0 and the line y = 5 is A, find $\frac{A}{13}$.
- **5.** Area of the region bounded by $[x]^2 = [y]^2$, if $x \in [1, 5]$, where [] denotes the greatest integer function, is:
- **6.** Consider $y = x^2$ and f(x) where f(x), is a differentiable function satisfying $f(x+1) + f(z-1) = f(x+z) \ \forall \ x, z \in R$ and f(0) = 0; f'(0) = 4. If area bounded by curve $y = x^2$ and y = f(x) is Δ , find the value of $\left(\frac{3}{16}\Delta\right)$.
- 7. The least integer which is greater than or equal to the area of region in x y plane satisfying $x^6 x^2 + y^2 \le 0$ is :
- **8.** The set of points (x, y) in the plane statisfying $x^{2/5} + |y| = 1$ form a curve enclosing a region of area $\frac{p}{q}$ square units, where p and q are relatively prime positive integers. Find p q.


					Answ	/er	S				F.	
1. 1 8. 1	2.	7	3.	6	4.	5	5.	8	6.	2	7.	2

DIFFERENTIAL EQUATIONS

Exercise-1: Single Choice Problems

2. The differential equation satisfied by family of curves $y = Ae^x + Be^{3x} + Ce^{5x}$ where A, B, C are arbitrary constants is:

(a)
$$\frac{d^3y}{dx^3} - 9\frac{d^2y}{dx^2} + 23\frac{dy}{dx} + 15y = 0$$
 (b) $\frac{d^3y}{dx^3} + 9\frac{d^2y}{dx^2} - 23\frac{dy}{dx} - 15y = 0$

(b)
$$\frac{d^3y}{dx^3} + 9\frac{d^2y}{dx^2} - 23\frac{dy}{dx} - 15y = 0$$

(c)
$$\frac{d^3y}{dx^3} + 9\frac{d^2y}{dx^2} - 23\frac{dy}{dx} + 15y = 0$$
 (d) $\frac{d^3y}{dx^3} - 9\frac{d^2y}{dx^2} + 23\frac{dy}{dx} - 15y = 0$

(d)
$$\frac{d^3y}{dx^3} - 9\frac{d^2y}{dx^2} + 23\frac{dy}{dx} - 15y = 0$$

3. If y = y(x) and it follows the relation $e^{xy^2} + y\cos(x^2) = 5$ then y'(0) is equal to :

- (b) -16

4. $(x^2 + y^2) dy = xy dx$. If $y(x_0) = e$, y(1) = 1, then the value of x_0 is equal to:

- (a) $\sqrt{3}e$
- (b) $\sqrt{e^2 \frac{1}{2}}$ (c) $\sqrt{\frac{e^2 1}{2}}$
- (d) $\sqrt{e^2 + \frac{1}{2}}$

5. The differential equation $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{v}$ determines a family of circles with :

- (a) Variable radii and fixed centre at (0,1)
- (b) Variable radii and fixed centre at (0, −1)
- (c) Fixed radius 1 and variable centres along x-axis
- (d) Fixed radius 1 and variable centres along y-axis

6. Interval contained in the domain of definition of non-zero solutions of the differential equation $(x-3)^2y' + y = 0$ is:

- (a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (b) $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ (c) $\left(\frac{\pi}{8}, \frac{5\pi}{4}\right)$
- (d) $(-\pi, \pi)$

7. A function y = f(x) satisfies the differential equation $(x+1) f'(x) - 2(x^2 + x) f(x) = \frac{e^{x^2}}{(x+1)}$;

 $\forall x > -1$. If f(0) = 5, then f(x) is:

(a)
$$\left(\frac{3x+5}{x+1}\right) \cdot e^{x^2}$$

(b)
$$\left(\frac{6x+5}{x+1}\right) \cdot e^{x^2}$$

(c)
$$\left(\frac{6x+5}{(x+1)^2}\right) \cdot e^{x^2}$$

(d)
$$\left(\frac{5-6x}{x+1}\right) \cdot e^{x^2}$$

8. The solution of the differential equation $2x^2y \frac{dy}{dx} = \tan(x^2y^2) - 2xy^2$ given $y(1) = \sqrt{\frac{\pi}{2}}$ is:

(a)
$$\sin(x^2y^2) - 1 = 0$$

(b)
$$\cos\left(\frac{\pi}{2} + x^2y^2\right) + x = 0$$

(c)
$$\sin(x^2y^2) = e^{x-1}$$

(d)
$$\sin(x^2y^2) = e^{2(x-1)}$$

9. The differential equation whose general solution given by $y = C_1 \cos(x + C_2) - C_3 e^{-x + C_4} + C_5 \sin x$, where C_1, C_2, \dots, C_5 are constants is:

(a)
$$\frac{d^4y}{dx^4} - \frac{d^2y}{dx^2} + y = 0$$

(b)
$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$$

(c)
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

(d)
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

10. If $y = e^{(\alpha+1)x}$ be solution of differential equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$; then α is :

(c)
$$-1$$

11. The order and degree of the differential equation $\left(\frac{dy}{dx}\right)^{1/3} - 4\frac{d^2y}{dx^2} - 7x = 0$ are α and β , then the value of $(\alpha + \beta)$ is :

(a) 3 (b) 4 (c) 2 (d) 5

12. General solution of differential equation of $f(x)\frac{dy}{dx} = f^2(x) + f(x)y + f'(x)y$ is:

(c being arbitary constant.)

(a)
$$y = f(x) + ce^x$$

(b)
$$y = -f(x) + ce^x$$

(c)
$$y = -f(x) + ce^x f(x)$$

(d)
$$y = c f(x) + e^x$$

13. The order and degree respectively of the differential equation of all tangent lines to parabola $x^2 = 2y$ is:

14. The general solution of the differential equation $\frac{dy}{dx} + x(x+y) = x(x+y)^3 - 1$ is:

(a)
$$\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^4} \right| = x^2 + C$$
 (b) $\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^2} \right| = x^2 + C$

(b)
$$\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^2} \right| = x^2 + C$$

(c)
$$2\ln\left|\frac{(x+y+1)(x+y-1)}{(x+y)^2}\right| = x^2 + C$$
 (d) $\ln\left|\frac{(x+y+1)(x+y-1)}{(x+y)^2}\right| = x + C$

(d)
$$\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^2} \right| = x+C$$

(where C is arbitrary constant.)

15. The general solution of $\frac{dy}{dx} = 2y \tan x + \tan^2 x$ is :

(a)
$$y \cos^2 x = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

(b)
$$y \sec^2 x = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

(c)
$$y \cos^2 x = \frac{x}{2} - \frac{\cos 2x}{4} + C$$

(d)
$$y \cos^2 x = \frac{x}{2} - \frac{\sin 2x}{2} + C$$

(where C is an arbitrary constant.)

16. The solution of differential equation $\frac{d^2y}{dx^2} = \frac{dy}{dx}$, y(0) = 3 and y'(0) = 2:

(a) is a periodic function

- (b) approaches to zero as $x \to -\infty$
- (c) has an asymptote parallel to x-axis
- (d) has an asymptote parallel to y-axis

17. The solution of the differential equation $(x^2 + 1)\frac{d^2y}{dx^2} = 2x\left(\frac{dy}{dx}\right)$ under the conditions y(0) = 1

and y'(0) = 3, is:

(a)
$$y = x^2 + 3x + 1$$

(b)
$$y = x^3 + 3x + 1$$

(c)
$$y = x^4 + 3x + 1$$

(d)
$$y = 3 \tan^{-1} x + x^2 + 1$$

18. The differential equation of the family of curves $cy^2 = 2x + c$ (where c is an arbitrary constant.)

(a)
$$\frac{xdy}{dx} = 1$$

(b)
$$\left(\frac{dy}{dx}\right)^2 = \frac{2xdy}{dx} + \frac{1}{2}$$

(b)
$$\left(\frac{dy}{dx}\right)^2 = \frac{2xdy}{dx} + 1$$
 (c) $y^2 = 2xy \frac{dy}{dx} + 1$ (d) $y^2 = \frac{2ydy}{dx} + 1$

19. The solution of the equation $\frac{dy}{dx} + \frac{1}{x} \tan y = \frac{1}{x^2} \tan y \sin y$ is :

(a)
$$2y = \sin y (1 - 2cx^2)$$

(b)
$$2x = \cot y (1 + 2cx^2)$$

(c)
$$2x = \sin y (1 - 2cx^2)$$

(d)
$$2x \sin y = 1 - 2cx^2$$

20. Solution of the differential equation $xdy - ydx - \sqrt{x^2 + y^2}dx = 0$ is :

(a)
$$y - \sqrt{x^2 + y^2} = cx^2$$

(b)
$$y + \sqrt{x^2 + y^2} = cx$$

(c)
$$x - \sqrt{x^2 + y^2} = cx^2$$

(d)
$$y + \sqrt{x^2 + y^2} = cx^2$$

21. Let f(x) be differentiable function on the interval $(0, \infty)$ such that f(1) = 1 and $\lim_{t \to x} \left(\frac{t^3 f(x) - x^3 f(t)}{t^2 - x^2} \right) = \frac{1}{2} \, \forall \, x > 0, \text{ then } f(x) \text{ is :}$

(a)
$$\frac{1}{4x} + \frac{3x^2}{4}$$

(b)
$$\frac{3}{4x} + \frac{x^3}{4}$$

(a)
$$\frac{1}{4x} + \frac{3x^2}{4}$$
 (b) $\frac{3}{4x} + \frac{x^3}{4}$ (c) $\frac{1}{4x} + \frac{3x^3}{4}$ (d) $\frac{1}{4x^3} + \frac{3x}{4}$

(d)
$$\frac{1}{4x^3} + \frac{3x}{4}$$

22. The population p(t) at time 't' of a certain mouse species satisfies the differential equation $\frac{d}{dt}p(t) = 0.5p(t) - 450$. If p(0) = 850, then the time at which the population becomes zero is:

(a)
$$\frac{1}{2} \ln 18$$

(b) ln 18

(c) 2ln 18

23. The solution of the differential equation $\sin 2y \frac{dy}{dx} + 2\tan x \cos^2 y = 2\sec x \cos^3 y$ is:

(where C is arbitrary constant)

(a)
$$\cos y \sec x = \tan x + C$$

(b)
$$\sec y \cos x = \tan x + C$$

(c)
$$\sec y \sec x = \tan x + C$$

(d)
$$\tan y \sec x = \sec x + C$$

24. The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$ is:

(where C is arbitrary constant)

(a)
$$4x + y + 1 = 2\tan(2x + y + C)$$

(b)
$$4x + y + 1 = 2\tan(x + 2y + C)$$

(c)
$$4x + y + 1 = 2\tan(2y + C)$$

(d)
$$4x + y + 1 = 2\tan(2x + C)$$

25. If a curve is such that line joining origin to any point P(x, y) on the curve and the line parallel to y-axis through P are equally inclined to tangent to curve at P, then the differential equation of the curve is:

(a)
$$x \left(\frac{dy}{dx}\right)^2 - 2y \frac{dy}{dx} = x$$

(b)
$$x \left(\frac{dy}{dx}\right)^2 + 2y \frac{dy}{dx} = x$$

(c)
$$y \left(\frac{dy}{dx}\right)^2 - 2x \frac{dy}{dx} = x$$

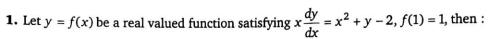
(d)
$$y \left(\frac{dy}{dx}\right)^2 - 2y \frac{dy}{dx} = x$$

26. If y = f(x) satisfy the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$; f(1) = 1; then value of f(3) equals:

27. Let y = f(x) and $\frac{x}{y} \frac{dy}{dx} = \frac{3x^2 - y}{2y - x^2}$; f(1) = 1 then the possible value of $\frac{1}{3} f(3)$ equals :

(a) 9

(b) 4


(c) 3

(d) 2

Differential Equations

1								A	nsı	ver	s							6 1	1
1.	(a)	2.	(d)	3.	(b)	4.	(a)	5.	(c)	6.	(a)	7.	(b)	8.	(c)	9.	(c)	10.	(b)
11.	(d)	12.	(c)	13.	(a)	14.	(b)	15.	(a)	16.	(c)	17.	(ъ)	18.					
21.	(c)	22.	(c)	23.	(c)	24.	(d)	25.	(a)	26.	(a)	27.	(c)						

Exercise-2: One or More than One Answer is/are Correct

- (a) f(x) is minimum at x = 1
- (b) f(x) is maximum at x = 1

(c) f(3) = 5

(d) f(2) = 3

2. Solution of differential equation
$$x \cos x \left(\frac{dy}{dx} \right) + y(x \sin x + \cos x) = 1$$
 is:

(a) $xy = \sin x + c \cos x$

- (b) $xy \sec x = \tan x + c$
- (c) $xy + \sin x + c \cos x = 0$
- (d) None of these

(where C is an arbitrary constant.)

- **3.** If a differentiable function satisfies $(x-y)f(x+y)-(x+y)f(x-y)=2(x^2y-y^3) \forall x,y \in \mathbb{R}$ and f(1)=2, then:
 - (a) f(x) must be polynomial function
- (b) f(3) = 12

(c) f(0) = 0

- (d) f(3) = 13
- **4.** A function y = f(x) satisfies the differential equation

$$f(x)\sin 2x - \cos x + (1 + \sin^2 x) f'(x) = 0$$

with f(0) = 0. The value of $f\left(\frac{\pi}{6}\right)$ equals to :

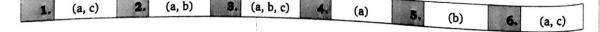
- (a) $\frac{2}{5}$
- (b) $\frac{3}{5}$
- (c) $\frac{1}{5}$
- (d) $\frac{4}{5}$

5. Solution of the differential equation $(2 + 2x^2\sqrt{y}) ydx + (x^2\sqrt{y} + 2)x dy = 0$ is/are:

(a) $xy(x^2\sqrt{y} + 5) = c$

(b) $xy(x^2\sqrt{y} + 3) = c$

(c) $xy(y^2\sqrt{x} + 3) = c$


(d) $xy(y^2\sqrt{x} + 5) = c$

6. If y(x) satisfies the differential equation $\frac{dy}{dx} = \sin 2x + 3y \cot x$ and $y\left(\frac{\pi}{2}\right) = 2$ then which of the following statement(s) is/are correct?

(a) $y\left(\frac{\pi}{6}\right) = 0$

- (b) $y'\left(\frac{\pi}{3}\right) = \frac{9 3\sqrt{2}}{2}$
- (c) y(x) increases in the interval
- (d) $\int_{-\pi/2}^{\pi/2} y(x) dx = x$

Answers

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

A differentiable function y = g(x) satisfies $\int (x-t+1)g(t) dt = x^4 + x^2$; $\forall x \ge 0$.

1. y = g(x) satisfies the differential equation :

(a)
$$\frac{dy}{dx} - y = 12x^2 + 2$$

(b)
$$\frac{dy}{dx} + 2y = 12x^2 + 2$$

(c)
$$\frac{dy}{dx} + y = 12x^2 + 2$$

(d)
$$\frac{dy}{dx} + y = 12x + 2$$

- **2.** The value of g(0) equals to :
 - (a) 0
- (b) 1
- (c) e^2
- (d) Data insufficient

Paragraph for Question Nos. 3 to 5

Suppose f and g are differentiable functions such that xg(f(x)) f'(g(x))g'(x) = f(g(x)) $g'(f(x)) f'(x) \forall x \in R \text{ and } f \text{ is positive, } g \text{ is positive } \forall x \in R. \text{ Also } \int_{C}^{\infty} f(g(t)) dt = \frac{1}{2} (1 - e^{-2x})$

- $\forall x \in R, g(f(0)) = 1 \text{ and } h(x) = \frac{g(f(x))}{f(g(x))} \forall x \in R.$
- **3.** The graph of y = h(x) is symmetric with respect to line:
 - (a) x = -1
- (b) x = 0
- (c) x = 1
- (d) x = 2

- **4.** The value of f(g(0)) + g(f(0)) is equal to :
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

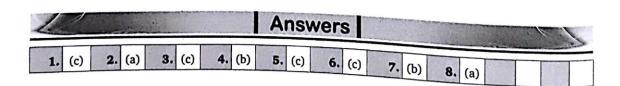
- **5.** The largest possible value of $h(x) \forall x \in R$ is :
 - (a) 1
- (b) $e^{1/3}$
- (c) e
- (d) e^2

Paragraph for Question Nos. 6 to 8

Given a function 'g' which has a derivative g'(x) for every real x and which satisfy g'(0) = 2 and $g(x + y) = e^{y}g(x) + e^{x}g(y)$ for all x and y.

- **6.** The function g(x) is:
 - (a) $x(2+xe^x)$
- (b) $x(e^x + 1)$
- (c) $2xe^x$
- (d) $x + \ln(x+1)$

- 7. The range of function g(x) is :
 - (a) R
- (b) $\left[-\frac{2}{e},\infty\right]$ (c) $\left[-\frac{1}{e},\infty\right]$
- (d) [0, ∞)


8. The value of $\lim_{x\to -\infty} g(x)$ is:

(a) 0

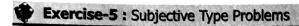
(b) 1

(c) 2

(d) Does not exist

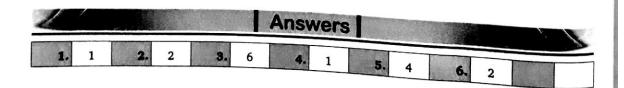
Exercise-4: Matching Type Problems

1.


	Column-I (Differential equation)	1	Column-II Solution (Integral curves)
(A)	$y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}$	(P)	$y = A_1 x^2 + A_2 x + A_3$
(B)	$(2x-10y^3)\frac{dy}{dx} + y = 0$	(Q)	$x^2y^2 + 1 = cy$
(C)	$\left(\frac{dy}{dx}\right)\left(\frac{d^3y}{dx^3}\right) - 3\left(\frac{d^2y}{dx^2}\right)^2 = 0$	(R)	(x+1)(1-y)=cy
(D)	$(x^2y^2 - 1)dy + 2xy^3dx = 0$	(S)	$x = A_1 y^2 + A_2 y + A_3$
		(T)	$xy^2 = 2y^5 + c$

2.

	Column-l		Column-II
(A)	Solution of differential equation $[3x^2y + 2xy - e^x(1+x)]dx + (x^3 + x^2)dy = 0 \text{ is :}$	(P)	$y^2(x^2 + 1 + ce^{x^2}) = 1$
(B)	Solution of differential equation $ydx - xdy - 3xy^{2}e^{x^{2}}dx = 0 \text{ is :}$	(Q)	$(x^2 + x^3)y - xe^x = c$
(C)	Solution of differential equation $\frac{dy}{dx} = xy(x^2y^2 - 1) \text{ is :}$	(R)	$\frac{x}{y} - \frac{3}{2}e^{x^2} = c$
(D)	Solution of differential equation $\frac{dy}{dx}(x^2y^3 + xy) = 1 \text{ is :}$	(S)	$\frac{1}{x} = 2 - y^2 + ce^{-y^2/2}$
		(T)	$\frac{2}{x} = 1 - y^2 + ce^{-y/2}$
	(where c is arbitrary constant).		


Answers

- 1. $A \rightarrow R$; $B \rightarrow T$; $C \rightarrow S$; $D \rightarrow Q$
- 2. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$

- 1. Find the value of |a| for which the area of triangle included between the coordinate axes and any tangent to the curve $x^ay = \lambda^a$ is constant (where λ is constant.).
- **2.** Let y = f(x) satisfies the differential equation xy(1+y) dx = dy. If f(0) = 1 and $f(2) = \frac{e^2}{k-e^2}$, then find the value of k.
- **3.** If $y^2 = 3\cos^2 x + 2\sin^2 x$, then the value of $y^4 + y^3 \frac{d^2y}{dx^2}$ is
- **4.** Let f(x) be a differentiable function in $[-1, \infty)$ and f(0) = 1 such that $\lim_{t \to x+1} \frac{t^2 f(x+1) (x+1)^2 f(t)}{f(t) f(x+1)} = 1.$ Find the value of $\lim_{x \to 1} \frac{\ln(f(x)) \ln 2}{x-1}$.
- **5.** Let $y = (a \sin x + (b+c)\cos x)e^{x+d}$, where a,b,c and d are parameters represent a family of curves, then differential equation for the given family of curves is given by $y'' \alpha y' + \beta y = 0$, then $\alpha + \beta = 0$
- **6.** Let y = f(x) satisfies the differential equation xy(1+y)dx = dy. If f(0) = 1 and $f(2) = \frac{e^2}{k-e^2}$, then find the value of k.

Algebra

- 8. Quadratic Equations
- 9. Sequence and Series
- 10. Determinants
- 11. Complex Numbers
- 12. Matrices
- 13. Permutation and Combinations
- 14. Binomial Theorem
- 15. Probability
- **16.** Logarithms

Chapter 8 - Quadratic Equations

QUADRATIC EQUATIONS

*	Exercise-1	:	Single	Choice	Probl	ems

-				
E	xercise-1 : Single C	Choice Problems		
1.	Sum of values of x and	d y satisfying the equat	$\sin 3^x - 4^y = 77; \ 3^{x/2}$	$-2^{y} = 7 \text{ is}$:
	(a) 2	(b) 3	(c) 4	(d) 5
2.	If $f(x) = \prod_{i=1}^3 (x-a_i) +$	$\sum_{i=1}^{3} a_i - 3x \text{ where } a_i < 0$	a_{i+1} for $i = 1$, 2, then $f(a_{i+1}, a_{i+1}, a_{i$	x) = 0 has :
	(a) only one distinct r		(b) exactly two distin	
	(c) exactly 3 distinct	real roots	(d) 3 equal real roots	3
3.	Complete set of real va	alues of 'a' for which th	e equation $x^4 - 2ax^2 +$	$x + a^2 - a = 0 \text{ has all its}$
	roots real:			
	14	(b) [1, ∞)		(d) [0, ∞)
4.	The cubic polynomial	with leading coefficien	t unity all whose roots	are 3 units less than the
	roots of the equation	$x^3 - 3x^2 - 4x + 12 = 0$	is denoted as $f(x)$, then	f(x) is equal to:
	(a) $3x^2 - 12x + 5$	(b) $3x^2 + 12x + 5$	(c) $3x^2 + 12x - 5$	(d) $3x^2 - 12x - 5$
5.	The set of values of k ($k \in R$) for which the eq	uation $x^2 - 4 x + 3 - k $	-1 = 0 will have exactly
	four real roots, is:		(-) (4 0)	(4) (1 0)
	(a) $(-2, 4)$	(b) (-4, 4)		(d) (-1, 0)
6.	The number of integer	rs satisfying the inequa	lity $\frac{1}{x+6} \le \frac{1}{x}$ is:	
		4 > 0	(a) 0	(d) 3
7	The product of uncom	mon real roots of the tw	o polynomials $p(x) = x$	$x^4 + 2x^3 - 8x^2 - 6x + 15$
,.	and $q(x) = x^3 + 4x^2$	-x - 10 is:		
		416	(c) 8	(d) 12
R.	If $\lambda_1, \lambda_2(\lambda_1 > \lambda_2)$	are two values	of λ for wh	nich the expression
٠.	$f(x, y) = x^2 + \lambda xy + 3$	$y^2 - 5x - 7y + 6$ can be	resolved as a product of	nich the expression of two linear factors, then
	the value of $3\lambda_1 + 2\lambda_2$	2 is:		
	(a) 5	(b) 10	(c) 15	(d) 20

9.	Let α , β be the roots α	of the quadratic equati	on $ax^2 + bx + c = 0$, the	n the roots of	the equation
	$a(x+1)^2 + b(x+1)$	$(x-2)+c(x-2)^2=0$	are:		
	(a) $\frac{2\alpha+1}{\alpha-1}$, $\frac{2\beta+1}{\beta-1}$		(b) $\frac{2\alpha-1}{\alpha+1}$, $\frac{2\beta-1}{\beta+1}$. 17.
	(c) $\frac{\alpha+1}{\alpha-2}$, $\frac{\beta+1}{\beta-2}$		(d) $\frac{2\alpha+3}{\alpha-1}$, $\frac{2\beta+3}{\beta-1}$		132
10.	If $a, b \in R$ distinct minimum value of $ a $	numbers satisfying $ a = b$ is:	a-1 + b-1 = a + b	= a+1 + b+1	l , then the
	(a) 3	(b) 0	(c) 1	(d) 2	
11.	The smallest positive	integer p for which e	$xpression x^2 - 2px + 3p$		e for atleast
	one real x is:			C	
	(a) 3	(b) 4	(c) 5	(d) 6	
12.	For $x \in R$, the expres	$\frac{x^2 + 2x + c}{x^2 + 4x + 3c} $ can	take all real values if c	€:	
	(a) (1, 2)		(b) [0, 1]		
	(c) (0, 1)		(d) (-1, 0)		
13.	If 2 lies between the	ne roots of the equat	ion $t^2 - mt + 2 = 0$, (r	$n \in R$) then t	he value of
	$\left[\left(\frac{3 x }{9+x^2} \right)^m \right] $ is:				***
	(where [-] denotes gre	eatest integer function)		
	(a) 0	eatest integer function (b) 1	(c) 8	(4) 27	
14.	(a) 0	(b) 1	(c) 8	(d) 27	
14.	(a) 0	(b) 1 ral roots of the equation	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$	$39x^2 + 1155 =$	= 0 is :
	(a) 0 The number of integral (a) 0	(b) 1 ral roots of the equation (b) 2	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4	(d) 27 39x ² + 1155 = (d) 6	= 0 is :
	(a) 0 The number of integr	(b) 1 ral roots of the equation (b) 2	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4	$39x^2 + 1155 =$	= 0 is :
15.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^4}$	(b) 1 ral roots of the equation (b) 2 $\frac{1}{n^4} = 119$, then the value (b) 18	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$	39x ² + 1155 = (d) 6	
15.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^4}$	(b) 1 ral roots of the equation (b) 2 $\frac{1}{n^4} = 119$, then the value (b) 18	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$	39x ² + 1155 = (d) 6	
15.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^4}$ (a) 11 If the equation $ax^2 + \frac{1}{n^4}$	(b) 1 ral roots of the equation (b) 2 $\frac{1}{n^4} = 119$, then the value (b) 18 $\frac{1}{n^4} = 2bx + c = 0$ and $ax^2 = 0$	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$ (c) 24 $+ 2cx + b = 0, a \neq 0, b \neq 3$	39x ² + 1155 = (d) 6	
15.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^4}$	(b) 1 ral roots of the equation (b) 2 $\frac{1}{m^4} = 119$, then the value (b) 18 $+ 2bx + c = 0 \text{ and } ax^2 + c$ is are the roots of the q	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$ (c) 24 + 2cx + b = 0, $a \ne 0$, $b \ne 0$ uadratic equation:	39x ² + 1155 = (d) 6 (d) 36 (c, have a co	
15. 16.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^4}$ (a) 11 If the equation $ax^2 + \frac{1}{n^4}$ then their other roots (a) $a^2x(x+1) + 4bc$ (c) $a^2x(x+2) + 8bc$	(b) 1 ral roots of the equation (b) 2 $\frac{1}{n^4} = 119$, then the value of the	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$ (c) 24 + 2cx + b = 0, $a \ne 0$, $b \ne 0$ uadratic equation: (b) $a^2x(x+1) + 8ba$	39x ² + 1155 = (d) 6 (d) 36 (e) c, have a co	ommon root,
15. 16.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^4}$ (a) 11 If the equation $ax^2 + \frac{1}{n^4}$ then their other roots (a) $a^2x(x+1) + 4bc$ (c) $a^2x(x+2) + 8bc$	(b) 1 ral roots of the equation (b) 2 $\frac{1}{n^4} = 119$, then the value of the	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$ (c) 24 + 2cx + b = 0, $a \ne 0$, $b \ne 0$ uadratic equation: (b) $a^2x(x+1) + 8ba$	39x ² + 1155 = (d) 6 (d) 36 (e) c, have a co	ommon root,
15. 16.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^2}$ (a) 11 If the equation $ax^2 + \frac{1}{n^2}$ then their other roots (a) $a^2x(x+1) + 4bc$ (c) $a^2x(x+2) + 8bc$ If $\cos \alpha$, $\cos \beta$ and $\cos \alpha$	(b) 1 ral roots of the equation (b) 2 $\frac{1}{m^4} = 119$, then the value (b) 18 $\frac{1}{m^4} = 2bx + c = 0$ and $ax^2 = 0$ are the roots of the equation (c) are the roots of the	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$ (c) 24 + 2cx + b = 0, $a \ne 0$, $b \ne 0$ uadratic equation: (b) $a^2x(x+1) + 8bc$ (d) $a^2x(1+2x) + 8bc$	$39x^{2} + 1155 =$ (d) 6 (d) 36 (e) c, have a concept conce	mmon root,
15. 16.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^2}$ (a) 11 If the equation $ax^2 + \frac{1}{n^2}$ then their other roots (a) $a^2x(x+1) + 4bc$ (c) $a^2x(x+2) + 8bc$ If $\cos \alpha$, $\cos \beta$ and $\cos \alpha$	(b) 1 ral roots of the equation (b) 2 $\frac{1}{m^4} = 119$, then the value (b) 18 $\frac{1}{m^4} = 2bx + c = 0$ and $ax^2 = 0$ are the roots of the equation (c) are the roots of the	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$ (c) 24 + 2cx + b = 0, $a \ne 0$, $b \ne 0$ uadratic equation: (b) $a^2x(x+1) + 8bc$ (d) $a^2x(1+2x) + 8bc$	$39x^{2} + 1155 =$ (d) 6 (d) 36 (e) c, have a concept conce	mmon root,
15. 16.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^2}$ (a) 11 If the equation $ax^2 + \frac{1}{n^2}$ then their other roots (a) $a^2x(x+1) + 4bc^2$ (c) $a^2x(x+2) + 8bc^2$ If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ the radius of the circle is:	(b) 1 ral roots of the equation (b) 2 $\frac{1}{m^4} = 119$, then the value (b) 18 $+ 2bx + c = 0 \text{ and } ax^2 + c$ is are the roots of the quarter of the equation $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ whose centre is $(\Sigma \alpha, \alpha)$	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right = $ (c) 24 $+ 2cx + b = 0, a \neq 0, b \neq 3$ uadratic equation: (b) $a^2x(x+1) + 8bc$ (d) $a^2x(1+2x) + 8b$ quation $9x^3 - 9x^2 - x + 3$ $\sum \cos \alpha$ and passing the	$39x^{2} + 1155 =$ (d) 6 (d) 36 (e) c, have a concept conce	mmon root,
15. 16. 17.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{2}$ (a) 11 If the equation $ax^2 + \frac{1}{2}$ then their other roots (a) $a^2x(x+1) + 4bc^2$ (c) $a^2x(x+2) + 8bc^2$ If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ the radius of the circle is: (a) 2	(b) 1 ral roots of the equation (b) 2 $\frac{1}{m^4} = 119$, then the value (b) 18 $+ 2bx + c = 0 \text{ and } ax^2 + c$ is are the roots of the quarter of the equation of the equat	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$ (c) 24 $+ 2cx + b = 0, a \neq 0, b \neq 3$ uadratic equation: (b) $a^2x(x+1) + 8bc$ (d) $a^2x(1+2x) + 8b$ quation $9x^3 - 9x^2 - x + 3$ $\sum \cos \alpha$ and passing the	$39x^{2} + 1155 =$ (d) 6 (d) 36 (e) c, have a concept conce	mmon root,
15. 16. 17.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{2}$ (a) 11 If the equation $ax^2 + \frac{1}{2}$ then their other roots (a) $a^2x(x+1) + 4bc^2$ (c) $a^2x(x+2) + 8bc^2$ If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ the radius of the circle is: (a) 2	(b) 1 ral roots of the equation (b) 2 $\frac{1}{m^4} = 119$, then the value (b) 18 $+ 2bx + c = 0 \text{ and } ax^2 + c$ is are the roots of the quarter of the equation of the equat	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$ (c) 24 $+ 2cx + b = 0, a \neq 0, b \neq 3$ uadratic equation: (b) $a^2x(x+1) + 8bc$ (d) $a^2x(1+2x) + 8b$ quation $9x^3 - 9x^2 - x + 3$ $\sum \cos \alpha$ and passing the	$39x^{2} + 1155 =$ (d) 6 (d) 36 (e) c, have a constant $c = 0$ $c = 0$ $c = 0$ $c = 0$ Tough $(2\sin^{-1} \cos x)$	mmon root
15. 16. 17.	(a) 0 The number of integral (a) 0 If the value of $m^4 + \frac{1}{n^2}$ (a) 11 If the equation $ax^2 + \frac{1}{n^2}$ then their other roots (a) $a^2x(x+1) + 4bc^2$ (c) $a^2x(x+2) + 8bc^2$ If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ the radius of the circle is:	(b) 1 ral roots of the equation (b) 2 $\frac{1}{m^4} = 119$, then the value (b) 18 $+ 2bx + c = 0 \text{ and } ax^2 + c$ is are the roots of the quarter of the equation of the equat	(c) 8 on $x^8 - 24x^7 - 18x^5 + 3$ (c) 4 lue of $\left m^3 - \frac{1}{m^3} \right =$ (c) 24 $+ 2cx + b = 0, a \neq 0, b \neq 3$ uadratic equation: (b) $a^2x(x+1) + 8bc$ (d) $a^2x(1+2x) + 8b$ quation $9x^3 - 9x^2 - x + 3$ $\sum \cos \alpha$ and passing the	$39x^{2} + 1155 =$ (d) 6 (d) 36 (e) c, have a constant $c = 0$ $c = 0$ $c = 0$ $c = 0$ Tough $(2\sin^{-1} \cos x)$	mmon root,

(a) sinβ

(a) lies between -17 and -3 (b) does not lie between -17 and -3 (c) lies between 3 and 17 (d) does not lie between 3 and 17 19. $\frac{x+3}{x^2-x-2} \ge \frac{1}{x-4}$ holds for all x satisfying: (a) -2 < x < 1 or x > 4(b) -1 < x < 2 or x > 4(c) x < -1 or 2 < x < 4(d) x > -1 or 2 < x < 4**20.** If x = 4 + 3i (where $i = \sqrt{-1}$), then the value of $x^3 - 4x^2 - 7x + 12$ equals: (b) 48 + 36i(c) -256 + 12i**21.** Let $f(x) = \frac{x^2 + x - 1}{x^2 - x + 1}$, then the largest value of $f(x) \forall x \in [-1, 3]$ is: (c) 1 **22.** In above problem, the range of $f(x) \forall x \in [-1, 1]$ is: (a) $\left[-1, \frac{3}{5}\right]$ (b) $\left[-1, \frac{5}{3}\right]$ (c) $\left[-\frac{1}{3}, 1\right]$ (a) $\left[-1, \frac{3}{5}\right]$ (d) [-1, 1]**23.** If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the product of the roots is: (a) $-2(p^2+q^2)$ (b) $-(p^2+q^2)$ (c) $-\frac{(p^2+q^2)}{2}$ **24.** If a root of the equation $a_1 x^2 + b_1 x + c_1 = 0$ is the reciprocal of a root of the equation $a_2x^2 + b_2x + c_2 = 0$, then: (a) $(a_1 a_2 - c_1 c_2)^2 = (a_1 b_2 - b_1 c_2)(a_2 b_1 - b_2 c_1)$ (b) $(a_1a_2 - b_1b_2)^2 = (a_1b_2 - b_1c_2)(a_2b_1 - b_2c_1)$ (c) $(b_1c_2 - b_2c_1)^2 = (a_1b_2 - b_1c_2)(a_2b_1 + b_2c_1)$ (d) $(b_1c_2 - b_2c_1)^2 = (a_1b_2 + b_1c_2)(a_2b_1 - b_2c_1)$ **25.** If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation with roots $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ is: (b) $x^2 + 5x - 3 = 0$ (a) $3x^2 - 25x + 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ **26.** If the difference between the roots of $x^2 + ax + b = 0$ is same as that of $x^2 + bx + a = 0$, $a \ne b$. then: (a) a+b+4=0 (b) a+b-4=0(c) a-b-4=027. If $\tan \theta_i$; i = 1, 2, 3, 4 are the roots of equation $x^4 - x^3 \sin 2\beta + x^2 \cos 2\beta - x \cos \beta - \sin \beta = 0$. then $tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) =$ (c) tan \beta (d) cot B

30	 Minimum possible: 	number of positive root	t of the quadratic equat	ion
	$x^2 - (1+\lambda)x + \lambda - 2$	$2=0, \lambda \in R$:		
	(a) 2		(b) 0	
	(c) 1		(d) can not be deter	mined
31.	Let α, β be real root	s of the quadratic equat	ion $x^2 + kx + (k^2 + 2k -$	4) = 0 , then the minimum
	value of $\alpha^2 + \beta^2$ is			
	(a) 12	(b) $\frac{4}{9}$	(c) $\frac{16}{9}$	(d) $\frac{8}{9}$
	(1000)	,	,	9
32.			$=2x^3+5x-(a-3)$ whe	en divided by $x-2$ have
	same remainders, th			
	(a) 10	(b) -10	(c) 20	(d) -20
33.		ero distinct roots of x^2	+ax+b=0, then the lea	ast value of $x^2 + ax + b$ is
	equal to :	0	0	
	(a) $\frac{2}{3}$	(b) $\frac{9}{4}$	(c) $-\frac{9}{4}$	(d) 1
34.	Let $\alpha.\beta$ be the i	oots of the equation	$n ax^2 + bx + c = 0 A$	root of the equation
•	$a^3x^2 + abcx + c^3 = 0$	Dis:		root of the equation
	(a) $\alpha + \beta$	(b) $\alpha^2 + \beta$	(c) $\alpha^2 - \beta$	(d) $\alpha^2 \beta$
35.	Let a, b, c be the leng	ths of the sides of a tria	ngle (no two of them ar	n 1) 11 D Ifaha
	roots of the equation	$x^2 + 2(a+b+c)x + 6k$	c(ab + bc + ca) = 0 are re	eal, then
	(a) $k < \frac{2}{3}$	(b) $k > \frac{2}{3}$	(c) $k > 1$	•
	.5	3		(d) $k < \frac{1}{4}$
36.	Root(s) of the equa	tion $9x^2 - 18 x + 5 = 0$) belonging to the dom	4 nain of definition of the
	function $f(x) = \log(x)$	-x-2) is/lie:		
	(a) $\frac{-5}{2}$, $\frac{-1}{2}$	(b) $\frac{5}{3}$, $\frac{1}{3}$	(c) $\frac{-5}{}$	(d) -1
	3 3	a are the reate of2	3	(d) $\frac{-1}{3}$
37.	roots of $x^2 + 2Bx + C$	- 0 then:	$+2bx+c=0$ and $\gamma+cc$	3 $\cos^4 \alpha$, $\gamma + \sin^4 \alpha$ are the
	roots of $x^- + 2Bx + C$	= 0, then. (b) $h^2 - R^2 - a - C$	(-) 12 0	
	(a) $B - B = C - C$	(b) b -B =t-C	(c) $b^2 - B^2 = 4(c - C)$	(d) $4(b^2 - B^2) = c - C$

28. Let a, b, c, d are positive real numbers such that $\frac{a}{b} \neq \frac{c}{d}$, then the roots of the equation:

29. If α , β are the roots of $ax^2 + bx + c = 0$, then the equation whose roots are $2 + \alpha$, $2 + \beta$, is β

(b) real and equal

(d) nothing can be said

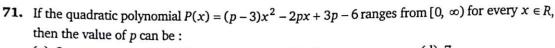
(b) $ax^2 + x(4a - b) + 4a + 2b + c = 0$

(d) $ax^2 + x(b-4a) + 4a - 2b + c = 0$

 $(a^2 + b^2)x^2 + 2x(ac + bd) + (c^2 + d^2) = 0$ are:

(a) $ax^2 + x(4a-b) + 4a-2b+c=0$

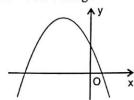
(c) $ax^2 + x(b-4a) + 4a + 2b + c = 0$


(a) real and distinct

(c) imaginary

38.	Minimum value of $ x $	-p + x-15 + x-p-	15 . If $p \le x \le 15$ and 0	$0 :$
	(a) 30	(b) 15	(c) 10	(d) 0
39.	If the quadratic equati	$on 4x^2 - 2x - m = 0 and$	$d4p(q-r)x^2-2q(r-$	p)x + r(p-q) = 0 have a
	common root such tha	at second equation has	equal roots then the va	alue of m will be :
	(a) 0	(b) 1	(c) 2	(d) 3
40.	The range of k for wh	nich the inequality $k\cos x$	$s^2 x - k \cos x + 1 \ge 0 \forall x$	$\in (-\infty, \infty)$ is:
	(a) $k > -\frac{1}{2}$	(b) $k > 4$	$(c) -\frac{1}{2} \le k \le 4$	$(d) \ \frac{1}{2} \le k \le 5$
41.	If $\frac{1+\alpha}{1-\alpha}$, $\frac{1+\beta}{1-\beta}$, $\frac{1+\gamma}{1-\gamma}$ are	re roots of the cubic equ	uation $f(x) = 0$ where α	α , β , γ are the roots of the
	cubic equation $3x^3 - f(x) = 0$ is:	-2x + 5 = 0, then the r	number of negative rea	al roots of the equation
	(a) 0	(b) 1	(c) 2	(d) 3
42.	The sum of all integra	al values of λ for which	$(\lambda^2 + \lambda - 2) x^2 + (\lambda + 2)$	$x < 1 \forall x \in R$, is:
	(a) -1	(b) -3	(c) 0	(d) -2
43.	If α , β , γ , $\delta \in R$ satisfy	$\frac{(\alpha+1)^2+(\beta+1)^2+(\gamma+1)^2}{\alpha+\beta+\gamma}$	$(+1)^2 + (\delta + 1)^2 = 4$	
.0.				
	If biquadratic equation	on $a_0 x^4 + a_1 x^3 + a_2 x^2$	$+ a_3 x + a_4 = 0$ has the	roots
	$\left(\alpha + \frac{1}{\beta} - 1\right) \left(\beta + \frac{1}{\gamma} - 1\right)$	$ \int \left(\gamma + \frac{1}{\delta} - 1 \right) \left(\delta + \frac{1}{\alpha} - 1 \right) $	1). Then the value of a	$_{2}/a_{0}$ is:
	(a) 4	(b) -4	(c) 6	(d) none of these
44.		value of x satisfying $ x $	$ x-1 + x-2 + x-3 \ge$	6 is $(-\infty, a] \cup [b, \infty)$, then
	a+b=:	4) 0	(-) ((1)
4-	(a) 2	(b) 3	(c) 6	(d) 4
45.	then the set of value		$x - (\alpha + 1)x + 2\alpha = 0$	ies in the interval (0, 3),
	(a) $(-\infty, 0) \cup (6, \infty)$	u is given by.	(b) $(-\infty, 0] \cup (6, \infty)$	
	(c) $(-\infty, 0] \cup [6, \infty)$		(d) (0, 6)	
46.	The condition that th	e root of $x^3 + 3px^2 + 3$	8qx + r = 0 are in H.P. is	::
	(a) $2p^3 - 3pqr + r^2 =$		(b) $3p^3 - 2pqr + p^2$	
	(c) $2a^3 - 3pqr + r^2 =$		(d) $r^3 - 3pqr + 2q^3 =$	•
47				es of x for which y is real,
٠,,	is:	7xy 1 x 1 0 = 0, then the	ic complete set of value	s of x for which y is real,
	(a) $x \le -2$ or $x \ge 3$	(b) $x \le 2$ or $x \ge 3$	(c) $x \le -3$ or $x \ge 2$	(d) $-3 \le x \le 2$
48.			$(2x-1) < \log_{\cos x^2}(2x-1)$ is:	
	(a) (1/2, 1)	COSX	(b) $(-\infty, 1)$	
	(c) (1/2, 3)		(d) $(1, \infty) - \sqrt{2n\pi}$, n	∈ N

40	• • • • • • • • • • • • • • • • • • • •	. 2	o are real and of one	posite sign (where p, q, r
49	If the roots α , β of the	the equation $px^2 + qx + t$	$r = 0$ are real and or opposition $a_1(x) = 0$	posite sign (where p , q , r $(-\alpha)^2 = 0$ are:
		then the roots of the ec	quation $\alpha (x-\beta)^2 + \beta (x$	w)
	(a) positive	2 2	(b) negative	
	(c) real and of oppo	site sign	(d) imaginary	4-0
50.	Let a, b and c be three	e distinct real roots of t	he cubic $x^3 + 2x^2 - 4x$	-4-0.
	If the equation $x^3 + a$	$qx^2 + rx + s = 0$ has root	$\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$, then the value	alue of $(q + r + s)$ is equal
	to:			
922750		(b) $\frac{1}{2}$	4	(d) $\frac{1}{6}$
51.	Solution set of the in	equality, $2 - \log_2(x^2 +$	$3x) \ge 0$ is:	
	(a) [-4, 1]	(b) $[-4, -3) \cup (0, 1]$	(c) $(-\infty, -3) \cup (1, \infty)$	(d) $(-\infty, -4) \cup [1, \infty)$
52 .	For what least integr	al 'k' is the quadratic tri	inomial $(k-2)x^2 + 8x +$	-(k+4) is positive for all
	real values of x ?			
	(a) $k = 4$	(b) $k = 5$	(c) $k = 3$	(d) $k = 6$
53 .	If roots of the equa	ation $(m-2)x^2 - (8-2)$	(2m)x - (8 - 3m) = 0 are	opposite in sign, then
	number of integral v	alues(s) of m is/are:		
	(a) 0	(b) 1	(c) 2	(d) more than 2
54.	If $\log_{0.6} \left(\log_6 \left(\frac{x^2 + x^2}{x + x^2} \right) \right)$	$\left(\frac{x}{4}\right)$ < 0, then complete	set of value of 'x' is:	
	(a) (4 2) (0		(L) (
	(a) $(-4, -3) \cup (8, \infty)$)	(D) $(-\infty, -3) \cup (8, \infty)$	
	(c) (8, ∞)		(b) $(-\infty, -3) \cup (8, \infty)$ (d) None of these	
55.	(c) (8, ∞)		(d) None of these	
55.	(c) (8, ∞)	imbers α and β are the	(d) None of these	quation $ax^2 + c = 0$ with
	(c) $(8, \infty)$ Two different real nu $a, c \neq 0$, then $\alpha^3 + \beta^3$	imbers α and β are the is:	(d) None of these roots of the quadratic e	quation $ax^2 + c = 0$ with
	(c) $(8, \infty)$ Two different real nu $a, c \neq 0$, then $\alpha^3 + \beta^3$	imbers α and β are the is:	(d) None of these roots of the quadratic e	quation $ax^2 + c = 0$ with
	(c) $(8, \infty)$ Two different real nua, $c \neq 0$, then $\alpha^3 + \beta^3$ (a) a The least integral value.	imbers α and β are the is:	(d) None of these roots of the quadratic e	quation $ax^2 + c = 0$ with
56.	(c) $(8, \infty)$ Two different real nua, $c \neq 0$, then $\alpha^3 + \beta^3$ (a) a The least integral value of x is:	imbers α and β are the ris: (b) $-c$ lue of 'k' for which (k-1)	(d) None of these roots of the quadratic e (c) 0 $-1)x^2 - (k+1)x + (k+$	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real
56.	(c) $(8, \infty)$ Two different real nua, $c \neq 0$, then $\alpha^3 + \beta^3$ (a) a The least integral value of x is:	imbers α and β are the ris: (b) $-c$ lue of 'k' for which (k-1)	(d) None of these roots of the quadratic e (c) 0 $-1)x^2 - (k+1)x + (k+$	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real
56.	(c) $(8, \infty)$ Two different real nua, $c \ne 0$, then $\alpha^3 + \beta^3$ (a) a The least integral value of x is: (a) 1 If $(-2, 7)$ is the highest	imbers α and β are the first is: (b) $-c$ lue of 'k' for which (k-1) (b) 2 St point on the graph of	(d) None of these roots of the quadratic e (c) 0 (d) 1	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real
56. 57.	(c) $(8, \infty)$ Two different real nua, $c \ne 0$, then $\alpha^3 + \beta^3$ (a) a The least integral valuation of x is: (a) 1 If $(-2, 7)$ is the highest	imbers α and β are the first is: (b) $-c$ lue of 'k' for which (k-1) (b) 2 St point on the graph of (b) 11	(d) None of these roots of the quadratic e (c) 0 (d) 1 (1) $x^2 = (k+1)x + (k+1)x$	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals:
56. 57.	(c) $(8, \infty)$ Two different real nuts, $c \ne 0$, then $\alpha^3 + \beta^3$ (a) a The least integral value of x is: (a) 1 If $(-2, 7)$ is the highest (a) 31 If $a+b+c=0$,	imbers α and β are the α is: (b) $-c$ lue of 'k' for which (k- (b) 2 st point on the graph of (b) 11 $a,b,c \in Q$ th	(d) None of these roots of the quadratic e (c) 0 (d) 1	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals: (d) -1/3
56. 57. 58.	(c) $(8, \infty)$ Two different real number $a, c \neq 0$, then $\alpha^3 + \beta^3$ (a) a The least integral valuation of x is: (a) 1 If $(-2, 7)$ is the highest (a) 31 If $a+b+c=0$, $(b+c-a)x^2+(c+a)$	is: (b) $-c$ lue of 'k' for which (k- (b) 2 st point on the graph of (b) 11 $a, b, c \in Q$ th $-b \cdot x + (a + b - c) = 0$ a	(d) None of these roots of the quadratic e (c) 0 (d) $(x) = (x) = (x)$ (e) 0 (f) $(x) = (x) = (x)$ (f) $(x) = (x)$ (g) 3 (g) $(x) = (x)$ (g) $(x) = (x)$ (h) $(x) = (x$	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals: (d) $-1/3$ the equation
56. 57. 58.	(c) $(8, \infty)$ Two different real number $a, c \neq 0$, then $\alpha^3 + \beta^3$ (a) a The least integral valuation of x is: (a) 1 If $(-2, 7)$ is the highest (a) 31 If $a+b+c=0$, $(b+c-a)x^2+(c+a)$	is: (b) $-c$ lue of 'k' for which (k- (b) 2 st point on the graph of (b) 11 $a, b, c \in Q$ th $-b \cdot x + (a + b - c) = 0$ a	(d) None of these roots of the quadratic e (c) 0 (d) $(x) = (x) = (x)$ (e) 0 (f) $(x) = (x) = (x)$ (f) $(x) = (x)$ (g) 3 (g) $(x) = (x)$ (g) $(x) = (x)$ (h) $(x) = (x$	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals: (d) $-1/3$ the equation
56. 57. 58.	(c) $(8, \infty)$ Two different real number $a, c \neq 0$, then $\alpha^3 + \beta^3$ (a) a The least integral valuation of x is: (a) 1 If $(-2, 7)$ is the highest (a) 31 If $a+b+c=0$, $(b+c-a)x^2+(c+a)$	is: (b) $-c$ lue of 'k' for which (k- (b) 2 st point on the graph of (b) 11 $a, b, c \in Q$ th $-b \cdot x + (a + b - c) = 0$ a	(d) None of these roots of the quadratic errors of the quadratic errors of (c) 0 (c) 0 (c) 3 (c) 4 (c) 3 (c) 1 $($	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals: (d) $-1/3$ the equation
56. 57. 58.	(c) $(8, \infty)$ Two different real nuts, $c \ne 0$, then $a^3 + \beta^3$ (a) a The least integral value of x is: (a) 1 If $(-2, 7)$ is the highest (a) 31 If $a+b+c=0$, $(b+c-a)x^2+(c+a+b)$ (a) rational If two roots of x^3-a (a) $a+bc=0$	is: (b) $-c$ lue of 'k' for which (k- (b) 2 st point on the graph of (b) 11 $a, b, c \in Q$ th $-b \cdot x + (a + b - c) = 0$ a	(d) None of these roots of the quadratic errors of the quadratic errors of (c) 0 (c) 0 (c) 3 (c) 4 (c) 3 (c) 4 (c) 6 (c) 1 (c) 2 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 2 (c) 3 (c) 2 (c) 3 (c) 3 (c) 4 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 1 (c) 2 (c) 3 (c) 2 (c) 3 (c) 3 (c) 4 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 $($	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals: (d) $-1/3$ the equation
56. 57. 58.	(c) $(8, \infty)$ Two different real number $a, c \neq 0$, then $\alpha^3 + \beta^3$ (a) a The least integral valuation of x is: (a) 1 If $(-2, 7)$ is the highest (a) 31 If $a+b+c=0$, $(b+c-a)x^2+(c+a)$	is: (b) $-c$ lue of 'k' for which (k- (b) 2 st point on the graph of (b) 11 $a, b, c \in Q$ th $-b \cdot x + (a + b - c) = 0$ a	(d) None of these roots of the quadratic errors of the quadratic errors of (c) 0 (c) 0 (c) 3 (c) 4 (c) 3 (c) 1 $($	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals: (d) $-1/3$ the equation
56. 57. 58.	(c) $(8, \infty)$ Two different real nuts, $c \ne 0$, then $a^3 + \beta^3$ (a) a The least integral value of x is: (a) 1 If $(-2, 7)$ is the highest (a) 31 If $a+b+c=0$, $(b+c-a)x^2+(c+a+b)$ (a) rational If two roots of x^3-a (a) $a+bc=0$	is: (b) $-c$ lue of 'k' for which (k- (b) 2 st point on the graph of (b) 11 $a, b, c \in Q$ th $-b \cdot x + (a + b - c) = 0$ a	(d) None of these roots of the quadratic errors of the quadratic errors of (c) 0 (c) 0 (c) 3 (c) 4 (c) 3 (c) 4 (c) 6 (c) 1 (c) 2 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 2 (c) 3 (c) 2 (c) 3 (c) 3 (c) 4 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 1 (c) 2 (c) 3 (c) 2 (c) 3 (c) 3 (c) 4 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 $($	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals: (d) $-1/3$ the equation
56. 57. 58.	(c) $(8, \infty)$ Two different real nuts, $c \ne 0$, then $a^3 + \beta^3$ (a) a The least integral value of x is: (a) 1 If $(-2, 7)$ is the highest (a) 31 If $a+b+c=0$, $(b+c-a)x^2+(c+a+b)$ (a) rational If two roots of x^3-a (a) $a+bc=0$	is: (b) $-c$ lue of 'k' for which (k- (b) 2 st point on the graph of (b) 11 $a, b, c \in Q$ th $-b \cdot x + (a + b - c) = 0$ a	(d) None of these roots of the quadratic errors of the quadratic errors of (c) 0 (c) 0 (c) 3 (c) 4 (c) 3 (c) 4 (c) 6 (c) 1 (c) 2 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 2 (c) 3 (c) 2 (c) 3 (c) 3 (c) 4 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 1 (c) 2 (c) 3 (c) 2 (c) 3 (c) 3 (c) 4 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 $($	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals: (d) $-1/3$ the equation
56. 57. 58.	(c) $(8, \infty)$ Two different real nuts, $c \ne 0$, then $a^3 + \beta^3$ (a) a The least integral value of x is: (a) 1 If $(-2, 7)$ is the highest (a) 31 If $a+b+c=0$, $(b+c-a)x^2+(c+a+b)$ (a) rational If two roots of x^3-a (a) $a+bc=0$	is: (b) $-c$ lue of 'k' for which (k- (b) 2 st point on the graph of (b) 11 $a, b, c \in Q$ th $-b \cdot x + (a + b - c) = 0$ a	(d) None of these roots of the quadratic errors of the quadratic errors of (c) 0 (c) 0 (c) 3 (c) 4 (c) 3 (c) 4 (c) 6 (c) 1 (c) 2 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 2 (c) 3 (c) 2 (c) 3 (c) 3 (c) 4 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 1 (c) 2 (c) 3 (c) 2 (c) 3 (c) 3 (c) 4 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 4 (c) 6 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 3 (c) 3 (c) 4 (c) 4 (c) 6 (c) 1 $($	quation $ax^2 + c = 0$ with (d) -1 1) is positive for all real (d) 4 en k equals: (d) $-1/3$ the equation


	xc 10 1 1	. 2	1 1	c 2 0 ml
60.				$ts of x^2 - rx + s = 0. Then$
		$+2q^2-r=0$ has alway		
	(a) are positive and o	_	(b) two positive root	
61	(c) two negative root		(d) can't say anythin	g
01.	If $x^2 + px + 1$ is a factor			
		(b) $a^2 + c^2 = ab$		
62.	In a $\triangle ABC \tan \frac{A}{2}$, tan	$\frac{B}{2}$, tan $\frac{C}{2}$ are in H.P., the	hen the value of $\cot \frac{A}{2}$	-
	(a) 3	(b) 2	(c) 1	(d) $\sqrt{3}$
63.	Let $f(x) = 10 - x - 10 $ respectively, then:	$\forall x \in [-9, 9], \text{ if } M \text{ and }$	m be the maximum and	d minimum value of $f(x)$
	(a) $M + m = 0$		(c) $2M + m = 7$	
64.	Solution of the quadr	atic equation $(3 x -3)$	$^2 = x + 7$, which below	ngs to the domain of the
	function $y = \sqrt{(x-4)}$	x is:		
	(a) $\pm \frac{1}{9}$, ± 2	(b) $\frac{1}{9}$, 8	(c) $-2, -\frac{1}{9}$	(d) $-\frac{1}{9}$, 8
65.	Number of real soluti	ons of the equation x^2	+3 x +2=0 is:	
	(a) 0	(b) 1	(c) 2	(d) 4
66.	If the roots of equation	on $x^2 - bx + c = 0$ be tw	o consecutive integers,	then $b^2 - 4c =$
	(a) 3	(b) −2	(c) 1	(d) 2
67	If x is real, then maxi	mum value of $\frac{3x^2 + 9x}{x^2}$	c+17 is .	
67.	Il X Is Teal, then maxi	$3x^2 + 9$	x+7	
	(a) 41	(b) 1	(c) $\frac{17}{7}$	(d) $\frac{1}{4}$
60	If $\frac{x^2 + 2x + 7}{2x + 3} < 6$, x	∈ R then:		
06.	21 + 3			
	(a) $x \in \left(-\infty, -\frac{3}{2}\right) \cup \left(\frac{3}{2}\right)$	11,∞)	(b) $x \in (-\infty, -1) \cup (1$	1, ∞)
	(c) $x \in \left(-\frac{3}{2}, -1\right)$		(d) $x \in \left(-\infty, -\frac{3}{2}\right) \cup \left(-\infty, -\frac{3}{2}\right)$	-1, 11)
	(2)	3x - 2	, ,	
69.	If x is real, then range			
	(a) $R - \left\{ \frac{2}{5} \right\}$	(b) $R - \left\{ \frac{3}{7} \right\}$	(c) (−∞, ∞)	(d) $R - \left\{ \frac{-2}{5} \right\}$
70.	Let A denotes the set	of values of x for which	$\frac{x+2}{x-4} \le 0$ and B denote	s the set of values of x for
	which $x^2 - ax - 4 \le 0$	If B is the subset of A ,	, then a CAN NOT take	e the integral value :
	(a) 0	(b) 1	(c) 2	(d) 3

(c) 6

(d) 7

72. If graph of the quadratic $y = ax^2 + bx + c$ is given below:

then:

(a) a < 0, b > 0, c > 0

(b) a < 0, b > 0, c < 0

(c) a < 0, b < 0, c > 0

(d) a < 0, b < 0, c < 0

73. If quadratic equation $ax^2 + bx + c = 0$ does not have real roots, then which of the following may be false:

(a) a(a-b+c) > 0

(b) c(a-b+c) > 0

(c) b(a-b+c) > 0

(d) (a+b+c)(a-b+c) > 0

74. Minimum value of $y = x^2 - 3x + 5$, $x \in [-4, 1]$ is:

(c) 0

(d) 9

75. If $3x^2 - 17x + 10 = 0$ and $x^2 - 5x + m = 0$ has a common root, then sum of all possible real values of 'm' is:

(a) 0

(b) $-\frac{26}{9}$ (c) $\frac{29}{9}$ (d) $\frac{26}{3}$

76. For real numbers *x* and *y*, if $x^2 + xy - y^2 + 2x - y + 1 = 0$, then :

(a) y can not be between 0 and $\frac{8}{5}$

(b) $y \text{ can not be between } -\frac{8}{5} \text{ and } \frac{8}{5}$

(c) y can not be between $-\frac{8}{5}$ and 0

(d) y can not be between $-\frac{16}{5}$ and 0

77. If $3x^4 - 6x^3 + kx^2 - 8x - 12$ is divisible by x - 3, then it is also divisible by :

(a) $3x^2 - 4$

(b) $3x^2 + 4$

(c) $3x^2 + x$

(d) $3x^2 - x$

78. The complete set of values of a so that equation $\sin^4 x + a \sin^2 x + 4 = 0$ has at least one real root is:

(a) $(\infty, -5]$

(b) $(-\infty, 4] \cup [4, \infty)$

(c) $(-\infty, -4]$

(d) $[4, \infty)$

79. Let r, s, t be the roots of the equation $x^3 + ax^2 + bx + c = 0$, such $(rs)^2 + (st)^2 + (rt)^2 = b^2 - kac$, then k =

(a) 1

(b) 2

(c) 3

(d) 4

80.		$2x^3 + ax^2 + bx + c = 0$	are three consecutive p	ositive integers, then the
	value of $\frac{a^2}{b+1}$ =			
81.	(a) 1 Let 'k' be a real number $(3x^2 + kx + 3)(x^2 + kx)$	(b) 2 er. The minimum numb (x-1) = 0 is :	(c) 3 er of distinct real roots	(d) 4 possible of the equation
	(a) 0	(b) 2	(c) 3	(d) 4
92				
64.	If r and s are variables	saustying the equation	$\frac{1}{r+s} = -+-$. The value	$\frac{1}{s}$ is equal to .
	(a) 1		(b) −1	
	(c) 3		(d) not possible to det	
83.				es of $f(x)$ are 3 and 2
	respectively for $0 \le x$ (a) $(-2, 3)$	\leq 2, then the possible of (b) (-3/2, 2)	rdered pair of (a, b) is	: (d) (–5/2, 2)
84.	The roots of the equat			(d) (3/2, 2)
011		(b) 0, 1, 4		(d) 0, 2, 4
85.	If a, b, c be the sides of	of $\triangle ABC$ and equations	$ax^2 + bx + c = 0 \text{ and } 5x$	$x^2 + 12x + 13 = 0$ have a
	common root, then ∠			
	(a) 60°	(b) 90°	(c) 120°	(d) 45°
86.		ee real roots of the equ	uation $x^3 - 6x^2 + 5x -$	1 = 0, then the value of
	$\alpha^4 + \beta^4 + \gamma^4$ is:	a) (50	(-) 150	(4) 050
	(a) 250	(b) 650		(d) 950
87.	If one of the roots of	the equation $2x^2 - 6x + 6x = 6x + 6x = 6x + 6x = 6x + 6x = 6x =$	$k = 0$ is $\frac{1}{2}$, then the	te value of α and k are :
	(a) $\alpha = 3, k = 8$	(b) $\alpha = \frac{3}{2}, k = 17$	(c) $\alpha = -3$, $k = -17$	(d) $\alpha = 3, k = 17$
88.	Let x_1 and x_2 be the maximum value of x_1^2	e real roots of the equal $x^2 + x_2^2$ is:	ation $x^2 - (k-2)x + (k-2)x$	$(2^2 + 3k + 5) = 0$, then the
	(a) 19	(b) 18	(c) $\frac{50}{9}$	(d) non-existent
89.	The complete set of v	alues of 'a' for which th	ne inequality $(a-1) x^2$	$-(a+1)x+(a-1) \ge 0$ is
٠,٠	true for all $x \ge 2$.			
	(a) $\left(\frac{3}{7}, 1\right]$	(b) (-∞, 1)	(c) $\left(-\infty, \frac{7}{3}\right]$	L /
90.	If α , β be the roots of	of $4x^2 - 17x + \lambda = 0$, λ	$\in R$ such that $1 < \alpha < 2$	2 and $2 < \beta < 3$, then the
	number of integral va		() 0	(4) 4
	(a) 1	(b) 2	(c) 3	(d) 4

91	 Assume that p is a real number. In order of necessary that: 	of $\sqrt[3]{x+3p+1} - \sqrt[3]{x} = 1$ to have real solutions, it is
	(a) $p \ge 1/4$ (b) $p \ge -1/4$	(a) $n > 1/3$ (d) $n > -1/3$
92	If α , β are the roots	of the quadratic equation
	$x^{2} - \left(3 + 2^{\sqrt{\log_{2} 3}} - 3^{\sqrt{\log_{3} 2}}\right)x - 2(3^{\log_{3} 2} - 3^{\log_{3} 2})x - 2(3^{\log_{3} $	of the quadratic equation $(2^{\log_2 3}) = 0$, then the value of $\alpha^2 + \alpha\beta + \beta^2$ is
	equal to :	
	(a) 3 (b) 5	(c) 7 (d) 11
93.	The minimum value of $f(x, y) = x^2 - 4x$	$x + y^2 + 6y$ when x and y are subjected to the
	restrictions $0 \le x \le 1$ and $0 \le y \le 1$, is:	
	(a) -1 (b) -2	(c) -3 (d) -5
94.	The expression $ax^2 + 2bx + c$, where 'a' is a	non-zero real number, has same sign as that of 'a'
	for every real value of x, then roots of quadr	ratic equation $ax^2 + (b-c)x - 2b - c - a = 0$, are:
	(a) real and equal(c) non-real having positive real part	(d) non-real having negative real part
95.		then the value of $\left(\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1}\right)$ equals to:
	2000	(c) 2 (d) -2
96.		s of k for which the inequality
	(a) 2 (b) 3	(c) 4 (d) infinite
97.	The number of integral values w	thich can be taken by the expression,
	$f(x) = \frac{x^3 - 1}{(x - 1)(x^2 - x + 1)}$ for $x \in R$, is:	the expression,
	(a) 1 (b) 2	(c) 3 (d) infinite
98.	(a) 1 (b) 2	
98.	(a) 1 (b) 2 The complete set of values of <i>m</i> for which the is:	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in \mathbb{R}$,
	(a) 1 (b) 2 The complete set of values of m for which this: (a) $m = 0$ (b) $-1 < m < 1$	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in R$,
	(a) 1 (b) 2 The complete set of values of m for which this: (a) $m = 0$ (b) $-1 < m < 1$	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in R$,
	(a) 1 (b) 2 The complete set of values of m for which this: (a) $m = 0$ (b) $-1 < m < 1$	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in \mathbb{R}$,
	(a) 1 (b) 2 The complete set of values of m for which this: (a) $m = 0$ (b) $-1 < m < 1$ The complete set of values of a for which this	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in \mathbb{R}$, (c) $-2 < m < 2$ (d) $-4 < m < 4$ the roots of the equation $x^2 - 2 a + 1 x + 1 = 0$ are
	(a) 1 (b) 2 The complete set of values of m for which this: (a) $m = 0$ (b) $-1 < m < 1$ The complete set of values of a for which the real is given by:	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in R$, (c) $-2 < m < 2$ (d) $-4 < m < 4$ the roots of the equation $x^2 - 2 a + 1 x + 1 = 0$ are (b) $(-\infty, -1] \cup [0, \infty)$
99.	(a) 1 (b) 2 The complete set of values of m for which the is: (a) $m = 0$ (b) $-1 < m < 1$ The complete set of values of a for which the real is given by: (a) $(-\infty, -2] \cup [0, \infty)$ (c) $(-\infty, -1] \cup [1, \infty)$	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in R$, (c) $-2 < m < 2$ (d) $-4 < m < 4$ the roots of the equation $x^2 - 2 a + 1 x + 1 = 0$ are (b) $(-\infty, -1] \cup [0, \infty)$ (d) $(-\infty, -2] \cup [1, \infty)$
99. 100.	(a) 1 (b) 2 The complete set of values of m for which the is: (a) $m = 0$ (b) $-1 < m < 1$ The complete set of values of a for which the real is given by: (a) $(-\infty, -2] \cup [0, \infty)$ (c) $(-\infty, -1] \cup [1, \infty)$ The quadratic polynomials $P(x) = a_1 x^2 + 2b_1 x + c_1$, $Q(x) = a_2 x^2 + 2b_2 x + c_1$	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in R$, (c) $-2 < m < 2$ (d) $-4 < m < 4$ the roots of the equation $x^2 - 2 a+1 x+1=0$ are (b) $(-\infty, -1] \cup [0, \infty)$ (d) $(-\infty, -2] \cup [1, \infty)$ defined on real coefficients $x + c_2 \cdot P(x)$ and $O(x)$ both take positive.
99. 100.	(a) 1 (b) 2 The complete set of values of m for which the is: (a) $m = 0$ (b) $-1 < m < 1$ The complete set of values of a for which the real is given by: (a) $(-\infty, -2] \cup [0, \infty)$ (c) $(-\infty, -1] \cup [1, \infty)$	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in R$, (c) $-2 < m < 2$ (d) $-4 < m < 4$ the roots of the equation $x^2 - 2 a+1 x+1=0$ are (b) $(-\infty, -1] \cup [0, \infty)$ (d) $(-\infty, -2] \cup [1, \infty)$ defined on real coefficients $x + c_2 \cdot P(x)$ and $O(x)$ both take positive.
99. 100.	(a) 1 (b) 2 The complete set of values of m for which this: (a) $m = 0$ (b) $-1 < m < 1$ The complete set of values of a for which threal is given by: (a) $(-\infty, -2] \cup [0, \infty)$ (c) $(-\infty, -1] \cup [1, \infty)$ The quadratic polynomials $P(x) = a_1 x^2 + 2b_1 x + c_1$, $Q(x) = a_2 x^2 + 2b_2 x + c_1 c_2$, the (a) $f(x) < 0 \ \forall x \in R$.	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in R$, (c) $-2 < m < 2$ (d) $-4 < m < 4$ the roots of the equation $x^2 - 2 a + 1 x + 1 = 0$ are (b) $(-\infty, -1] \cup [0, \infty)$ (d) $(-\infty, -2] \cup [1, \infty)$ defined on real coefficients $x + c_2 \cdot P(x)$ and $O(x)$ both take $x = x + c_3 \cdot P(x)$ and $O(x)$ both take $x = x + c_3 \cdot P(x)$ and $O(x)$ both take $x = x + c_3 \cdot P(x)$ and $O(x)$ both take $x = x + c_3 \cdot P(x)$
99. 100.	(a) 1 (b) 2 The complete set of values of m for which this: (a) $m = 0$ (b) $-1 < m < 1$ The complete set of values of a for which threal is given by: (a) $(-\infty, -2] \cup [0, \infty)$ (c) $(-\infty, -1] \cup [1, \infty)$ The quadratic polynomials $P(x) = a_1 x^2 + 2b_1 x + c_1$, $Q(x) = a_2 x^2 + 2b_2$. $\forall x \in R$. If $f(x) = a_1 a_2 x^2 + b_1 b_2 x + c_1 c_2$, the	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in R$, (c) $-2 < m < 2$ (d) $-4 < m < 4$ the roots of the equation $x^2 - 2 a + 1 x + 1 = 0$ are (b) $(-\infty, -1] \cup [0, \infty)$ (d) $(-\infty, -2] \cup [1, \infty)$ defined on real coefficients $x + c_2 \cdot P(x)$ and $O(x)$ both take $x = x + c_3 \cdot P(x)$ and $O(x)$ both take $x = x + c_3 \cdot P(x)$ and $O(x)$ both take $x = x + c_3 \cdot P(x)$ and $O(x)$ both take $x = x + c_3 \cdot P(x)$
99. 100.	(a) 1 (b) 2 The complete set of values of m for which this: (a) $m = 0$ (b) $-1 < m < 1$ The complete set of values of a for which threal is given by: (a) $(-\infty, -2] \cup [0, \infty)$ (c) $(-\infty, -1] \cup [1, \infty)$ The quadratic polynomials $P(x) = a_1 x^2 + 2b_1 x + c_1$, $Q(x) = a_2 x^2 + 2b_2 x + c_1 c_2$, the (a) $f(x) < 0 \ \forall x \in R$.	the inequality $\frac{x^2 - mx - 2}{x^2 + mx + 4} > -1$ is satisfied $\forall x \in R$, (c) $-2 < m < 2$ (d) $-4 < m < 4$ the roots of the equation $x^2 - 2 a+1 x+1=0$ are (b) $(-\infty, -1] \cup [0, \infty)$ (d) $(-\infty, -2] \cup [1, \infty)$ defined on real coefficients $x + c_2 \cdot P(x)$ and $O(x)$ both take positive.

	(c) $f(x)$ takes both positive and negative values			
	(d) Nothing can be sa	aid about $f(x)$		
101.	If the equation x^2 +	$4+3\cos(ax+b)=2x$	has a solution then a	possible value of $(a + b)$
	equals			
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	~	(d) π
102.	Let α , β be the roots of	$f x^2 - 4x + A = 0 \text{ and } \gamma,$	δ be the roots of $x^2 - 3$	$6x + B = 0$. If α , β , γ , δ form
	an increasing G.P. an	$d A^t = B$ then the valu	e of 't' equals	
	(a) 4	(b) 5	(c) 6	(d) 8
103.	How many roots does	s the following equatio	n possess $3^{ x }$ ($2- x $) = 1 ?
	(a) 2	(b) 3	(c) 4	(d) 6
104.				0 and $\sin \beta$ equals to the
			nen $\sin(\alpha + \beta)\sin(\alpha - \beta)$	
	(a) $-\frac{3}{5}$	(b) $-\frac{4}{5}$	(c) $\frac{2}{\sqrt{2}}$	(d) 3
105.	Consider the function	as $f_1(x) = x$ and $f_2(x)$ as of the functions inter	$= 2 + \log_e x$, $x > 0$, where	ere e is the base of natural
			(b) once in (0, 1) and	d once in $(e^2 \text{ m})$
			(d) more than twice	
106	The sum of all the rea		(d) more than twice	$\sin(0, \omega)$
100.	The sum of an the rea	$x^4 - 3x^3 - 2x^2 - 3x$	+1 = 0 is ·	
	(a) 1	(b) 2	(c) 3	(d) 4
107.	If α , β ($\alpha < \beta$) are the	real roots of the equation	on $x^2 - (k+4)x + k^2 - 3$	$12 = 0$ such that $4 \in (\alpha, \beta)$
	; then the number of	integral values of k equ	ıal to :	, = (w, p)
	(a) 4	(b) 5	(c) 6	(d) 7
108.			$nx^2 + kx + (k^2 + 2k - 4)$	(a)) = 0, then the maximum
	value of $(\alpha^2 + \beta^2)$ is ϵ	equal to :		
	(a) 9	(b) 10	(c) 11	(d) 12
109.				for which $f'(x) > 0$ is:
		(b) $(-1, \infty)$		(d) (0, 1)
110.	If a h and c are the ro	oots of the equation x^3	$+2x^2 + 1 = 0$, find $\begin{vmatrix} a \\ b \end{vmatrix}$	b c .
-201	ii u, o uiii o aasaasaa	•	c	$\begin{bmatrix} a & b \end{bmatrix}$
	(a) 8	(b) -8	(c) 0	(d) 2
111.	Let α, β are the two r	eal roots of equation :	$x^2 + px + q = 0, p, q \in F$	$R, q \neq 0$. If the quadratic
	equation $g(x) = 0$ has	s two roots $\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}$	$\frac{1}{3}$ such that sum of roo	ts is equal to product of
	roots, then the comple	ete range of q is :		

	(a) $\left[\frac{1}{3},3\right]$	(b) $\left(\frac{1}{3},3\right]$		$(d)\left(-\infty,\frac{1}{3}\right)\cup(3,\infty)$
112.	If the equation $\ln(x^2)$	$(x^2 + 5x) - \ln(x + a + 3) =$	0 has exactly one solut	ion for x , then number of
	integers in the range	of a is:		
	(a) 4	(b) 5	(c) 6	(d) 7
113.	$Let f(x) = x^2 + \frac{1}{x^2} -$	$6x - \frac{6}{x} + 2$, then minim	num value of $f(x)$ is:	
	(a) -2		(c) -9	(d) -12
114.	If $x^2 + bx + b$ is a fact	tor of $x^3 + 2x^2 + 2x + 6$	$(c \neq 0)$, then $b - c$ is:	
	(a) 2	(b) −1	(c) 0	(d) -2
115.	If roots of $x^3 + 2x^2 + 2x^2 = 2x^2 + 2x^2 = 2x^2 + 2x^2 = 2x^2 + 2x^2 = 2x^$	+ 1 = 0 are α , β and γ , the	en the value of $(\alpha \beta)^3$ +	$(\beta \gamma)^3 + (\alpha \gamma)^3$, is:
	(a) -11	(b) 3	(c) 0	
116.	How many roots doe		n possess $3^{ x }(2- x)$	= 1 ?
	(a) 2	(b) 3	(c) 4	(d) 6
117.	The sum of all the re	al roots of equation x^4	$-3x^3 - 2x^2 - 3x + 1 = 0$	0 is :
	(a) 1	(b) 2		(d) 4
118.	If α and β are the	roots of the quadration	equation $4x^2 + 2x - 1$	l = 0 then the value of
	$\sum_{r=1}^{\infty} (\alpha^r + \beta^r) \text{ is :}$			
	(a) 2	(b) 3	(c) 6	(d) 0
119.	The number of value	(s) of x satisfying the eq	uation $(2011)^x + (2012)^x$	$(2013)^x + (2014)^x$
	= 0 is/are:			(2014)
	(a) exactly 2	(b) exactly 1	(c) more than one	(d) 0
120.	If α , β ($\alpha < \beta$) are the r	real roots of the equation	$\ln x^2 - (k+4)x + k^2 - 1$	$2 = 0$ such that $4 \in (\alpha, \beta)$;
	then the number of in	ntegral values of k equa	ls to:	(w,p),
	(a) 4	(b) 5	(c) 6	(d) 7
121.	Let α , β be real roots of	of the quadratic equation	$1x^2 + kx + (k^2 + 2k - 4)$	(d) 7) = 0, then the maximum
	value of $(\alpha^2 + \beta^2)$ is ϵ	equal to :		
	(a) 9	· (b) 10	(c) 11	(d) 12
122.	The exhaustive set of	values of a for which in	nequation $(a-1)x^2-(a-1)$	(d) 12 $(a+1)x + a - 1 \ge 0$ is true
	$\forall x \geq \Delta$			
	(a) (-∞,1)	(b) $\left[\frac{7}{3},\infty\right)$	(c) $\left[\frac{3}{7},\infty\right]$	(1)
			[7,~]	(d) None of these
123.	If the equation $x^2 + a$	$x + 12 = 0, x^2 + bx + 15$	$= 0$ and $x^2 + (a+b)x$	+ 36 = 0 have a common
	positive root, then b -	- 2d is equal to.		o nave a common
	(a) -6	(b) 22	(c) 6	(d) -22

158

Advanced Problems in Mathematics for JEE

- 2	-	
- 4	_	О
- 1	J	z

The equation $e^{\sin x} - e^{-x}$	$-\sin x - 4 = 0$ has		
(a) infinite number of	real roots	(b) no real root	
			roots
The difference ber	ween the maximum		
$f(x) = 3\sin^4 x - \cos^6$	x is:		
			(1) (
$\frac{(a)}{2}$	(b) $\frac{1}{2}$	(c) 3	(d) 4
If α, β are the roots of	$x^2 - 3x + \lambda = 0 \ (\lambda \in R)$) and $\alpha < 1 < \beta$, then the	ne true set of values of λ
	on the other) unu a 12 1 pg mon -	
	a. (9]		(1) (0)
(a) $\lambda \in \left[2, \frac{1}{4}\right]$	(b) $\lambda \in \left[-\infty, \frac{7}{4}\right]$	(c) $\lambda \in (2, \infty)$	(d) $\lambda \in (-\infty, 2)$
•			
	of, men the unference i	between the maximum	
(a) 196	(b) 284	(c) 182	(d) 126
	1.40 E. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
(a) 1	(b) $\frac{1}{1}$	(c) 1	(d) $\sqrt{\frac{2}{3}}$
5	$\sqrt{5}$	(c) 1	$\sqrt{3}$
If $a \neq 0$ and the equat	$ion ax^2 + bx + c = 0 has$	s two roots α and β such	ch that $\alpha < -3$ and $\beta > 2$,
which of the following	g is always true ?		
(a) $a(a+ b +c) > 0$		(b) $a(a+ b +c) < 0$	
(c) $9a - 3b + c > 0$		(d) $(9a-3b+c)(4a+$	
The number of negative	ve real roots of the equ	ation $(x^2 + 5x)^2 - 24 =$	$=2(x^2+5x)$ is:
(a) 4	(b) 3	(c) 2	(d) 1
	lues of x satisfying the	equation $3 x-2 + 1- $	
	(b) 4	(c) 2	(d) 3
If $\log_{\cos x} \sin x \ge 2$ and	$1 \ 0 \le x \le 3\pi$ then $\sin x$	ies in the interval	
$\begin{bmatrix} \sqrt{5} - 1 \end{bmatrix}$	$\sqrt{5}-1$	() [1,]	(1)
(a) $\left \frac{1}{2}, 1 \right $	(b) 0, <u>2</u>	$\binom{(c)}{2}, 1$	(d) none of these
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$	minimum value of f(x	c) is _5 then absolute t	ralua of the difference of
	minimum value of j (x	t) is -3, then absolute v	ande of the difference of
		(b) $\sqrt{20}$	
			and
	s of the equation x = '		icu
			8
(a) $\frac{3}{7}$	(b) $\frac{1}{7}$	(c) $\frac{1}{63}$	(d) $\frac{8}{45}$
	(a) infinite number of (c) exactly one real roots of the difference beth $f(x) = 3 \sin^4 x - \cos^6$ (a) $\frac{3}{2}$ If α, β are the roots of equals: (a) $\lambda \in \left(2, \frac{9}{4}\right]$ If $2x^2 + 5x + 7 = 0$ and $a, b, c \in \{1, 2, \dots, 10\}$ and time $t(t \ge 0)$ are given between particles A and time $t(t \ge 0)$ are given between particles A and the equation a and a	$f(x) = 3 \sin^4 x - \cos^6 x$ is: (a) $\frac{3}{2}$ (b) $\frac{5}{2}$ If α, β are the roots of $x^2 - 3x + \lambda = 0$ ($\lambda \in R$ equals: (a) $\lambda \in \left(2, \frac{9}{4}\right]$ (b) $\lambda \in \left(-\infty, \frac{9}{4}\right]$ If $2x^2 + 5x + 7 = 0$ and $ax^2 + bx + c = 0$ if $a, b, c \in \{1, 2, \dots, 100\}$, then the difference $a + b + c$ is: (a) 196 (b) 284 Two particles, A and B , are in motion in the time $t(t \ge 0)$ are given by $x_A = t$, $y_A = 2t$, between particles A and B is: (a) $\frac{1}{5}$ (b) $\frac{1}{\sqrt{5}}$ If $a \ne 0$ and the equation $ax^2 + bx + c = 0$ hawhich of the following is always true? (a) $a(a + b + c) > 0$ (c) $9a - 3b + c > 0$ The number of negative real roots of the equal of $a(a + b) = 0$ (a) $a(a + b) = 0$ (b) $a(a + b) = 0$ (c) $a(a + b) = 0$ The number of real values of $a(a + b) = 0$ (a) $a(a + b) = 0$ (b) $a(a + b) = 0$ (c) $a(a + b) = 0$ The number of real values of $a(a + b) = 0$ (a) $a(a + b) = 0$ (b) $a(a + b) = 0$ (c) $a(a + b) = 0$ The number of real values of $a(a + b) = 0$ (a) $a(a + b) = 0$ The number of real values of $a(a + b) = 0$ (b) $a(a + b) = 0$ (c) $a(a + b) = 0$ The number of real values of $a(a + b) = 0$ (a) $a(a + b) = 0$ (b) $a(a + b) = 0$ (c) $a(a + b) = 0$ The number of real values of $a(a + b) = 0$ (a) $a(a + b) = 0$ (b) $a(a + b) = 0$ (c) $a(a + b) = 0$ The number of real values of $a(a + b) = 0$ (a) $a(a + b) = 0$ (b) $a(a + b) = 0$ (c) $a(a + b) = 0$ The number of real values of $a(a + b) = 0$ (a) $a(a + b) = 0$ (b) $a(a + b) = 0$ (c) $a(a + b) = 0$ (d) $a(a + b) = 0$ (e) $a(a + b) = 0$ (for $a(a + b) = 0$ (g) $a(a + b) = 0$ (h) $a(a + b) = 0$	(a) infinite number of real roots (b) no real root (c) exactly one real root (d) exactly four real The difference between the maximum and minimum version $f(x) = 3\sin^4 x - \cos^6 x$ is: (a) $\frac{3}{2}$ (b) $\frac{5}{2}$ (c) 3 If α, β are the roots of $x^2 - 3x + \lambda = 0$ ($\lambda \in R$) and $\alpha < 1 < \beta$, then the equals: (a) $\lambda \in \left(2, \frac{9}{4}\right]$ (b) $\lambda \in \left(-\infty, \frac{9}{4}\right]$ (c) $\lambda \in (2, \infty)$ If $2x^2 + 5x + 7 = 0$ and $ax^2 + bx + c = 0$ have at least one roa, $b, c \in \{1, 2, \dots, 100\}$, then the difference between the maximum $a + b + c$ is: (a) 196 (b) 284 (c) 182 Two particles, A and B , are in motion in the xy -plane. Their co-ord time $t(t \geq 0)$ are given by $x_A = t$, $y_A = 2t$, $x_B = 1 - t$ and $y_B = t$. between particles A and B is: (a) $\frac{1}{5}$ (b) $\frac{1}{\sqrt{5}}$ (c) 1 If $a \neq 0$ and the equation $ax^2 + bx + c = 0$ has two roots α and β such which of the following is always true? (a) $a(a + b + c) > 0$ (b) $a(a + b + c) < 0$ (c) $9a - 3b + c > 0$ (d) $(9a - 3b + c)(4a + t)$ The number of negative real roots of the equation $(x^2 + 5x)^2 - 24 = t$ (a) 4 (b) 3 (c) 2 The number of real values of x satisfying the equation $3 x - 2 + 1 - t$ (a) 1 (b) 4 (c) 2 If $\log_{\cos x} \sin x \geq 2$ and $0 \leq x \leq 3\pi$ then $\sin x$ lies in the interval (a) $\left[\frac{\sqrt{5} - 1}{2}, 1\right]$ (b) $\left[0, \frac{\sqrt{5} - 1}{2}\right]$ (c) $\left[\frac{1}{2}, 1\right]$ Let $f(x) = x^2 + bx + c$, minimum value of $f(x)$ is -5 , then absolute where roots of $f(x)$ is: (a) 5 (b) $\sqrt{20}$ (c) $\sqrt{15}$ (d) Can't be determined to the equation of all the solutions of the equation $ x - 3 + x + 5 = 7x$, is:

10.00	The second of the second	THE PARTY OF THE PARTY OF THE PARTY.		
135.	Let $f(x) = x^2 + \frac{1}{x^2}$	$6x - \frac{6}{x} + 2$, then minim	num value of $f(x)$ is:	
	(a) -2	(b) -8	(c) -9	(d) -12
136.	If $a + b + c = 1$, $a^2 + b$	$a^2 + c^2 = 9$ and $a^3 + b^3$	$+c^3 = 1$, then the value	e of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ is:
	(a) $\frac{2}{3}$	(b) 5	(c) 6	(d) 1
137.	If roots of $x^3 + 2x^2 +$	$-1 = 0$ are α , β and γ , the	en the value of $(\alpha\beta)^3$ +	$(\beta \gamma)^3 + (\alpha \gamma)^3$, is:
	(a) -11	(b) 3	(c) 0	(d) -2
	(-) 11	(6) 3	(6)	
138.	If $x^2 + bx + b$ is a fact	for of $x^3 + 2x^2 + 2x + 6$	c ($c \neq 0$), then $b - c$ is:	
	(a) 2	(b) -1	(c) 0	(d) -2
139.	100 00 00 00 00 00 00 00 00 00 00 00 00		$ax^2 + bx + c$ is shown be	
	0-11	••• polynomical) (x) • •		
			×	
		α -1	1 β	
		, ·	`	
	(a) $\frac{c}{a} \beta-\alpha <-2$	(b) $f(x) > 0 \forall x > \beta$	(c) $ac > 0$	(d) $\frac{c}{a} > -1$
140.	If $f(x) = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$, then complete solutio	n of $0 < f(x) < 1$, is:	
	(a) $(-\infty, \infty)$	(b) (0,∞)	(c) $(-\infty, 0)$	(d) $(0,1) \cup (2,\infty)$
141	If a B vare the roots of	of the equation $x^3 + 2x$	$r^{2} - r + 1 = 0$ then value	$\cot \frac{(2-\alpha)(2-\beta)(2-\gamma)}{(2+\alpha)(2+\beta)(2+\gamma)},$
141.	11 a, p, f are me 10010		x + 1 = 0, then value	$\frac{1}{(2+\alpha)(2+\beta)(2+\gamma)}$
	is:			
	(a) 5	(b) -5	(c) 10	(d) $\frac{5}{2}$
142.	If α and β are roots of	the quadratic equation	$1x^2 + 4x + 3 = 0$, then t	he equation whose roots
	are $2\alpha + \beta$ and $\alpha + 2\beta$	1S :		
	(a) $x^2 - 12x + 35 = 0$	(b) $x^2 + 12x - 33 = 0$	(c) $x^2 - 12x - 33 = 0$	(d) $x^2 + 12x + 35 = 0$
143.	If a, b, c are real distin	ct numbers such that a	$a^3 + b^3 + c^3 = 3abc$, the	(d) $x^2 + 12x + 35 = 0$ on the quadratic equation
	$ax^2 + bx + c = 0 \text{ has}$			
	(a) Real roots		(b) At least one nega	tive root
	(c) Both roots are neg	gative	(4)	
144.	If the equation $x^2 + a$	$x + 12 = 0, x^2 + bx + 15$	$5 = 0$ and $x^2 + (a + b)x$	Non real roots + 36 = 0 have a common
	positive root, then b -	2a is equal to.	7	o nave a continion

(c) 6_.

(d) -22

positive root, then b - 2a is equal to.

(a) -6

(b) 22

145.				onal number, $a \neq 1$. It is
	given that x_1, x_2 and	$x_1 x_2$ are the real roots	of the equation. Then	$x_1 x_2 \left(\frac{a+1}{b+c} \right) =$
	(a) 1	(b) 2	(c) 3	(d) 4
146.	The exhaustive set of $\forall x \ge 2$.	values of a for which i	nequation $(a-1)x^2-($	$(a+1)x+a-1 \ge 0$ is true
	(a) $(-\infty, 1)$	(b) $\left[\frac{7}{3},\infty\right)$	$\binom{3}{3}$	(d) None of these
			L' /	(d) None of these
147.	The number of real s	olutions of the equation $x^2 - 3 x + 2 = 0$	1	
	(a) 2	(b) 4	(c) 1	(d) 3
148.	The equation $e^{\sin x}$ –			* 95° 9
	(a) infinite number of		(b) no real root	
	(c) exactly one real r	oot	(d) exactly four real	
149.				$\cos^2 2\theta = 0$, $(\theta \in R)$ then
		of $(\alpha^2 + \beta^2)$ is equal to:		(1) 0
150	(a) -4	(b) 8	(c) 0	(d) 2 π]; then the number of
150.	integers in the range		wo distinct roots in [0,	π]; then the number of
	(a) 0	(b) 1	(c) 2	(d) 3
151.	If $a \neq 0$ and the equa			ch that $\alpha < -3$ and $\beta > 2$.
	Which of the following		•	
	(a) $a(a+ b +c) > 0$		(b) $a(a+ b +c) < 0$	
	(c) $9a - 3b + c > 0$		(d) $(9a-3b+c)(4a+$	
152.				nd γ , δ are the roots of
		$(\alpha - \gamma)(\alpha - \delta)$ is equal to		
	(a) $q+r$	(b) $q-r$ on of $\log_{1/3}(2^{x+2}-4^x)$	(c) $-(q+r)$	(d) - (p+q+r)
153.		on of $\log_{1/3}(2^{n-2}-4^n)$	≥ -2 is:	
	(a) $(-\infty, 2)$	(b) $(-\infty, 2 + \sqrt{13})$	(c) $(2,\infty)$	(d) None of these

4						Answers													
1.	(d)	2.	(c)	3.	(a)	4.	(b)	5.	(a)	6.	(a)	7.	(b)	8.	(c)	9.	(a)	10.	(d)
11.	(c)	12.	(c)	13.	(a)	14.	(a)	15.	(d)	16.	(d)	17.	(b)	18.	(b)	19.	(c)	20.	(a)
21.	(b)	22.	(d)	23.	(c)	24.	(a)	25.	(d)	26.	(a)	27.	(d)	28.	(c)	29.	(d)	30.	(c)
31.	(d)	32.	(d)	33.	(c)	34.	(d)	35.	(a)	36.	(c)	37.	(b)	38.	(b)	39.	(c)	40.	(c)
41.	(ъ)	42.	(b)	43.	(c)	44.	(d)	45.	(b)	46.	(c)	47.	(a)	48.	(a)	49.	(c)	50.	(c)
51.	(b)	52.	(b)	53.	(a)	54.	(a)	55.	(c)	56.	(b)	57.	(c)	58.	(a)	59.	(c)	60.	(a)
61.	(c)	62.	(a)	63.	(a)	64.	(c)	65.	(a)	66.	(c)	67.	(a)	68.	(d)	69.	(b)	70.	(d)
71.	(c)	72.	(c)	73.	(c)	74.	(a)	75.	(c)	76.	(c)	77.	(b)	78.	(a)	79.	(b)	80.	(c)
81.	(ъ)	82.	(a)	83.	(a)	84.	(a)	85.	(b)	86.	(b)	87.	(d)	88.	(b)	89.	(d)	90.	(b)
91.	(ъ)	92.	(c)	93.	(c)	94.	(b)	95.	(d)	96.	(b)	97.	(b)	98.	(d)	99.	(a)	100.	(b)
101.	(d)	102.	(b)	103.	(c)	104.	(b)	105.	(c)	106.	(d)	107.	(d)	108.	(d)	109.	(c)	110.	(a)
111.	(a)	112.	(b)	113.	(c)	114.	(c)	115.	(b)	116.	(c)	117.	(d)	118.	(d)	119.	(b)	120.	(d)
121.	(d)	122.	(b)	123.	(c)	124.	(b)	125.	(d)	126.	(d)	127.	(c)	128.	(b)	129.	(b)	130.	(b)
131.	(c)	132.	(b)	133.	(b)	134.	(b)	135.	(c)	136.	(d)	137.	(b)	138.	(c)	139.	(a)	140.	(b)
141.	(b)	142.	(d)	143.	(a)	144.	(c)	145.	(a)	146.	(b)	147.	(b)	148.	(b)	149.	(c)	150.	(c)
151.	(b)	152.	(c)	153.	(a)														

Exercise-2: One or More than One Answer Is/are Correct

1. Let S is the set of all real x such that $\frac{2x-1}{2x^3+3x^2+x}$ is positive, then S contains:

(a)
$$\left(-\infty, -\frac{3}{2}\right)$$

(b)
$$\left(-\frac{3}{2}, -\frac{1}{2}\right)$$

(c)
$$\left(-\frac{1}{2},0\right)$$

(d)
$$\left(\frac{1}{2}, 2\right)$$

2. If $kx^2 - 4x + 3k + 1 > 0$ for at least one x > 0, then if $k \in S$, then S contains:

(a)
$$(1, \infty)$$

(d)
$$\left(-\frac{1}{4}, \infty\right)$$

3. The equation $|x^2 - x - 6| = x + 2$ has:

(a) two positive roots

(b) two real roots

(c) three real roots

(d) four real roots

4. If the roots of the equation $x^2 - ax - b = 0$ $(a, b \in R)$ are both lying between -2 and 2, then:

(a)
$$|a| < 2 - \frac{b}{2}$$

(b)
$$|a| > 2 - \frac{b}{2}$$

(c)
$$|a| < 4$$

(d)
$$|a| > \frac{b}{2} - 2$$

5. Consider the equation in real number x and a real parameter λ , $|x-1|-|x-2|+|x-4|=\lambda$ Then for $\lambda \ge 1$, the number of solutions, the equation can have is/are:

(a) 1 (b) 2 (c) 3 (d) 4 **6.** If a and b are two distinct non-zero real numbers such that $a - b = \frac{a}{b} = \frac{1}{b} - \frac{1}{a}$, then:

(a)
$$a > 0$$

(b)
$$a < 0$$

(c)
$$b < 0$$

(d)
$$b > 0$$

7. Let $f(x) = ax^2 + bx + c$, a > 0 and $f(2-x) = f(2+x) \forall x \in R$ and f(x) = 0 has 2 distinct real roots, then which of the following is true?

(a) Atleast one root must be positive

- (b) f(2) < f(0) > f(1)
- (c) Minimum value of f(x) is negative
- (d) Vertex of graph of y = f(x) lies in 3rd quadrat

8. In the above problem, if roots of equation f(x) = 0 are non-real complex, then which of the following is false?

- (a) $f(x) = \sin \frac{\pi x}{4}$ must have 2 solutions
- (b) 4a 2b + c < 0
- (c) If $\log_{f(2)} f(3)$ is not defined, then $f(x) \ge 1 \forall x \in R$
- (d) All a, b, c are positive

9. If exactly two integers lie between the roots of equation $x^2 + ax - 1 = 0$. Then integral value(s) of 'a' is/are:

- (a) -1
- (b) -2
- (c) 1
- (d) 2

(d) D > 0

(d) 7

(d) -10

negative value of x, then:

(where D is discriminant)

(where D is discriminant)

solution may be divisible by:

14. If $x^2 - 3x + 2 > 0$ and $x^2 - 3x - 4 \le 0$, then:

(a) 13a - 5b + 2c > 0

(c) c > 0, D < 0

(b) b > 0

Then roots were found to be -2 and -15. The correct roots are:

(b) -3

11. The quadratic expression $ax^2 + bx + c > 0 \ \forall \ x \in R$, then:

(a) a > 0

(a) 2

		(b) $2 \le x \le 4$		(d) $2 < x \le 4$
15.	If $5^x + (2\sqrt{3})^{2x} - 169$	$0 \le 0$ is true for x lying	in the interval :	
	(a) $(-\infty, 2)$	(b) (0, 2]	(c) (2, ∞)	(d) (0, 4)
16.				polynomials with real
	coefficients and satis	fy $ac = 2(b+d)$. Then we have $ac = 2(b+d)$.	which of the following is	(are) correct?
	- 18 A A A A A A A A A A A A A A A A A A		0 must have real roots.	
•			0 must have real roots.	
		dg(x) = 0 must have re		
		dg(x) = 0 must have in		
17.	The expression —	$\frac{1}{2\sqrt{x-1}} + \frac{1}{\sqrt{x-2\sqrt{x-1}}}$	simplifies to :	
	\sqrt{x} +	$2\sqrt{x}-1 \sqrt{x}-2\sqrt{x}-1$		
	(a) $\frac{2}{3-x}$ if $1 < x < 2$		(b) $\frac{2}{2-x}$ if $1 < x < 2$	
	(c) $\frac{2\sqrt{x-1}}{(x-2)}$ if $x > 2$		(d) $\frac{2\sqrt{x-1}}{x+2} \text{ if } x > 2$	
18.	If all values of x which	h satisfies the inequalit	$y \log_{(1/3)}(x^2 + 2px + p^2)$	$(2+1) \ge 0$ also satisfy the
	inequality $kx^2 + kx - kx$	$k^2 \le 0$ for all real valu	es of k, then all possible	be values of p lies in the
	interval:		Possion	ic values of p lies in the
	(a) [-1, 1]	(b) [0, 1]	(c) [0, 2]	(d) [-2, 0]
19.	Which of the followin	g statement(s) is/are o	orrect?	
	(a) The number of qua	adratic equations havir	ng real roots which rema	in unchanged even after
	squaring their roo	ts is 3.		an unchanged even arter

10. If the minimum value of the quadratic expression $y = ax^2 + bx + c$ is negative attained at

12. The possible positive integral value of 'k' for which $5x^2 - 2kx + 1 < 0$ has exactly one integral

13. If the equation $x^2 + px + q = 0$, the coefficient of x was incorrectly written as 17 instead of 13.

(c) 5

(c) c > 0

(b) 13a - b + 2c > 0(d) a + c > b, D < 0

(b)	The number of solutions of the equation $\tan 2\theta + \tan 3\theta = 0$, in the interval $[0, \pi]$ is equal to 6.
(c)	For x_1 , x_2 , $x_3 > 0$, the minimum value of $\frac{2x_1}{x_2} + \frac{128x_3^2}{x_2^2} + \frac{x_2^3}{4x_1x_3^2}$ equals 24.
(d)	The locus of the mid-points of chords of the circle $x^2 + y^2 - 2x - 6y - 1 = 0$, which are
	passing through origin is $x^2 + y^2 - x - 3y = 0$.

20. If (a, 0) is a point on a diameter inside the circle $x^2 + y^2 = 4$. Then $x^2 - 4x - a^2 = 0$ has:

(a) Exactly one real root in (-1, 0]

(b) Exactly one real root in [2, 5]

(c) Distinct roots greater than -1

(d) Distinct roots less than 5

21. Let $x^2 - px + q = 0$ where $p \in R$, $q \in R$, $pq \ne 0$ have the roots α , β such that $\alpha + 2\beta = 0$, then:

(a) $2p^2 + q = 0$

(b) $2q^2 + p = 0$

(c) q < 0

(d) q > 0

22. If a, b, c are rational numbers (a > b > c > 0) and quadratic equation $(a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b) = 0$ has a root in the interval (-1, 0) then which of the following statement(s) is/are correct?

(a) a + c < 2b

(b) both roots are rational

(c) $ax^2 + 2bx + c = 0$ have both roots negative

(d) $cx^2 + 2bx + a = 0$ have both roots negative

23. For the quadratic polynomial $f(x) = 4x^2 - 8ax + a$, the statements(s) which hold good is/are:

(a) There is only one integral 'a' for which f(x) is non-negative $\forall x \in R$

(b) For a < 0, the number zero lies between the zeroes of the polynomial

(c) f(x) = 0 has two distinct solutions in (0, 1) for $a \in \left(\frac{1}{7}, \frac{4}{7}\right)$

(d) The minimum value of f(x) for minimum value of a for which f(x) is non-negative $\forall x \in R$ is 0

24. Given a, b, c are three distinct real numbers satisfying the inequality a - 2b + 4c > 0 and the equation $ax^2 + bx + c = 0$ has no real roots. Then the possible value(s) of $\frac{4a + 2b + c}{a + 3b + 9c}$ is/are:

(a) 2

(b) -1

(c) 3

(d) $\sqrt{3}$

25. Let $f(x) = x^2 - 4x + c \ \forall \ x \in \mathbb{R}$, where c is a real constant, then which of the following is/are true?

(a) f(0) > f(1) > f(2)

(b) f(2) > f(3) > f(4)

(c) f(1) < f(4) < f(-1)

(d) f(0) = f(4) > f(3)

26. If 0 < a < b < c and the roots α , β of the equation $ax^2 + bx + c = 0$ are imaginary, then:

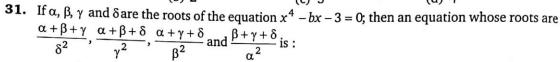
(a) $|\alpha| = |\beta|$

(b) $|\alpha| > 1$

(c) $|\beta| < 1$

(d) $|\alpha| = 1$

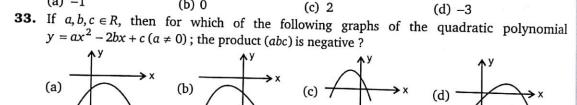
27. If x satisfies |x-1|+|x-2|+|x-3| > 6, then:


(a) $x \in (-\infty, 1)$

(b) $x \in (-\infty, 0)$

(c) $x \in (4, \infty)$

(d) $(2,\infty)$


		Auvanceu 1 roote	and production of the
28.	If both roots of the quadratic equation of the following is/are correct?	$ax^2 + x + b - a = 0 \text{ are non } a$	real and $b > -1$, then which
29.	(a) $a > 0$ (b) $a < b$ If a, b are two numbers such that $a^2 + b$	(c) $3a > 2 + 4b$ $b^2 = 7$ and $a^3 + b^3 = 10$, the	(d) $3a < 2 + 4b$ en:
	 (a) The greatest value of a+b = 5 (c) The least value of (a+b) is 1 The number of non-negative integral 	(b) The greatest va (d) The least value	lue of $(a+b)$ is 4 of $ a+b $ is 1
	holds is greater than or equal to: (a) 1 (b) 2	(c) 3	(d) 4

32. The value of k for which both roots of the equation $4x^2 - 2x + k = 0$ are completely in (-1, 1) may be equal to:

(a) -1 (b) 0 (c) 2

34. If the equation $ax^2 + bx + c = 0$; $a, b, c \in R$ and $a \ne 0$ has no real roots then which of the following is/are always correct?

35. If α and β are the roots of the equation $ax^2 + bx + c = 0$; $a, b, c \in \mathbb{R}$; $a \neq 0$ then which is (are) correct:

36. The equation $\cos^2 x - \sin x + \lambda = 0$, $x \in (0, \pi/2)$ has roots then value(s) of λ can be equal to:

37. If the equation $\ln(x^2 + 5x) - \ln(x + a + 3) = 0$ has exactly one solution for x, then possible integral value of a is:

(a) -3 (b) -1 (c) 0 (d) 2

38.	The number of non-negative integral ordered pair(s) (x, y) for which $(xy - 7)^2 = x^2 + y^2$
	holds is greater than or equal to :

(a) 1

(b) 2

(c) 3

(d) 4

39. If a < 0, then the value of x satisfying $x^2 - 2a|x - a| - 3a^2 = 0$ is/are

(b) $a(1+\sqrt{2})$

(c) $a(-1-\sqrt{6})$

(d) $a(-1+\sqrt{6})$

40. If 0 < a < b < c and the roots α , β of the equation $ax^2 + bx + c = 0$ are imaginary, then

(a) $|\alpha| = |\beta|$

(b) $|\alpha| > 1$

(c) $|\beta| < 1$

(d) $|\alpha| = 1$

41. If x satisfies |x-1|+|x-2|+|x-3| > 6, then

(a) $x \in (-\infty, 1)$

(b) $x \in (-\infty, 0)$

(c) $x \in (4, \infty)$

(d) $(2, \infty)$

42. The value of k for which both roots of the equation $4x^2 - 2x + k = 0$ are completely in (-1, 1), may be equal to:

(a) -1

(b) 0

(d) -3

43. Let α , β , γ , δ are roots of $x^4 - 12x^3 + \lambda x^2 - 54x + 14 = 0$

If $\alpha + \beta = \gamma + \delta$, then

(a) $\lambda = 45$

(c) If $\alpha^2 + \beta^2 < \gamma^2 + \delta^2$ then $\frac{\alpha\beta}{\gamma\delta} = \frac{7}{2}$ (d) If $\alpha^2 + \beta^2 < \gamma^2 + \delta^2 \Rightarrow \frac{\alpha\beta}{\gamma\delta} = \frac{2}{7}$

44. If
$$\left(\frac{a^3}{a-1}, \frac{a^2-3}{a-1}\right)$$
; $\left(\frac{b^3}{b-1}, \frac{b^2-3}{b-1}\right)$; $\left(\frac{c^3}{c-1}, \frac{c^2-3}{c-1}\right)$ lie

on L: lx + my + n = 0; where a, b, c are real numbers different from 1; then

(a) $a+b+c=-\frac{m}{1}$

(b) $abc = \frac{m+n}{1}$

(c) $ab + bc + ca = \frac{n}{1}$

(d) abc - (ab + bc + ca) + 3(a + b + c) = 0

Answers

1.	(a, c, d)	2.	(a, b, d)	3.	(a, c)	4.	(a, c, d)	5.	(a, b, c, d)	6.	(b, c)
7.	(a, b, c)	8.	(a, b, d)	9.	(a, c)	10.	(a, b, d)	11.	(a, b, c, d)	12.	(a, c)
13.	(b, d)	14.	(c, d)	15.	(a, b)	16.	(b)	17.	(b, c)	18.	(a, b, c)
19.	(a, b, d)	20.	(a, b, c, d)	21.	(a, c)	22.	(a, b,c, d)	23.	(a, b, d)	24.	(a, c, d)
25.	(a, c, d)	26.	(a, b)	27.	(b, c)	28.	(a, b)	29.	(a, b, d)	30.	(a, b, c, d)
31.	(d)	32.	(a, b)	33.	(a, c, d)	34.	(a, b, d)	35.	(a, b, d)	36.	(a, c)
37.	(b, c, d)	38.	(a, b, c, d)	39.	(a, d)	40.	(a, b)	41.	(b, c)	42.	(a, b)
43.	(a, c)	44.	(a, c, d)								

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $f(x) = ax^2 + bx + c$, $a \ne 0$, such that $f(-1-x) = f(-1+x) \forall x \in R$. Also given that f(x) = 0 has no real roots and 4a + b > 0.

- 1. Let $\alpha = 4a 2b + c$, $\beta = 9a + 3b + c$, $\gamma = 9a 3b + c$, then which of the following is correct?
 - (a) $\beta < \alpha < \gamma$
- (b) $\gamma < \alpha < \beta$
- (c) $\alpha < \gamma < \beta$
- (d) $\alpha < \beta < \gamma$

- **2.** Let p = b 4a, q = 2a + b, then pq is:
 - (a) negative
- (b) positive
- (c) 0
- (d) nothing can be said

Paragraph for Question Nos. 3 to 4

If α , β are the roots of equation $(k+1)x^2 - (20k+14)x + 91k + 40 = 0$; $(\alpha < \beta)k > 0$, then answer the following questions.

- **3.** The smaller root (α) lie in the interval :
 - (a) (4, 7)
- (b) (7, 10)
- (c) (10, 13)
- (d) None of these

- **4.** The larger root (β) lie in the interval :
 - (a) (4, 7)
- (b) (7, 10)
- (c) (10, 13)
- (d) None of these

Paragraph for Question Nos. 5 to 7

Let $f(x) = x^2 + bx + c \ \forall x \in \mathbb{R}$, $(b, c \in \mathbb{R})$ attains its least value at x = -1 and the graph of f(x)cuts y-axis at y = 2.

- **5.** The least value of $f(x) \forall x \in R$ is :
 - (a) -1
- (b) 0
- (c) 1
- (d) 3/2

- **6.** The value of f(-2) + f(0) + f(1) =
 - (a) 3
- (b) 5
- (c) 7
- (d) 9
- 7. If f(x) = a has two distinct real roots, then complete set of values of a is:
 - (a) (1, ∞)
- (b) (-2, -1)
- (c) (0, 1)
- (d) (1, 2)

Paragraph for Question Nos. 8 to 9

Consider the equation $\log_2^2 x - 4\log_2 x - m^2 - 2m - 13 = 0$, $m \in \mathbb{R}$. Let the real roots of the equation be x_1 , x_2 such that $x_1 < x_2$.

- **8.** The set of all values of m for which the equation has real roots is:
 - (a) $(-\infty, 0)$
- (b) $(0, \infty)$
- (c) [1, ∞)
- (d) $(-\infty, \infty)$

- **9.** The sum of maximum value of x_1 and minimum value of x_2 is:
 - (a) $\frac{513}{8}$
- (b) $\frac{513}{4}$
- (c) $\frac{1025}{8}$
- (d) $\frac{257}{4}$

Paragraph for Question Nos. 10 to 11

The equation $x^4 - 2x^3 - 3x^2 + 4x - 1 = 0$ has four distinct real roots x_1 , x_2 , x_3 , x_4 such that $x_1 < x_2 < x_3 < x_4$ and product of two roots is unity, then:

- **10.** $x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4 =$
 - (a) 0
- (b) 1
- (c) $\sqrt{5}$
- (d) -1

- 11. $x_2^3 + x_4^3 =$
 - (a) $\frac{2+5\sqrt{5}}{8}$
- (b) -4
- (c) $\frac{27\sqrt{5}+5}{4}$
- (d) 18

Paragraph for Question Nos. 12 to 14

Let f(x) be a polynomial of degree 5 with leading coefficient unity, such that f(1) = 5, f(2) = 4, f(3) = 3, f(4) = 2 and f(5) = 1, then:

- **12.** f(6) is equal to :
 - (a) 120
- (b) -120
- (c) 0
- (d) 6

- **13.** Sum of the roots of f(x) is equal to :
 - (a) 15
- (b) -15
- (c) 21
- (d) can't be determine

- **14.** Product of the roots of f(x) is equal to :
 - (a) 120
- (b) -120
- (c) 114
- (d) -114

Paragraph for Question Nos. 15 to 16

Consider the cubic equation in x, $x^3 - x^2 + (x - x^2) \sin \theta + (x - x^2) \cos \theta + (x - 1) \sin \theta \cos \theta = 0$ whose roots are α , β , γ .

- **15.** The value of $\left(\frac{\alpha}{2}\right)^2 + \left(\frac{\beta}{2}\right)^2 + \left(\frac{\gamma}{2}\right)^2 =$
 - (a) 1

(b) $\frac{1}{2}$

(c) 2 cos θ

- (d) $\frac{1}{2}(\sin\theta + \cos\theta + \sin\theta\cos\theta)$
- **16.** Number of values of θ in $[0, 2\pi]$ for which at least two roots are equal, is :
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

Paragraph for Question Nos. 17 to 18

Let P(x) be a quadratic polynomial with real coefficients such that for all real x the relation 2(1 + P(x)) = P(x-1) + P(x+1) holds.

If P(0) = 8 and P(2) = 32 then:

17.	The sum	of all	the	coefficient	of P	(x) is:

(a) 20

(b) 19

(c) 17

(d) 15

18. If the range of
$$P(x)$$
 is $[m, \infty)$, then the value of m is:

(a) -12

(b) 15

(c) -17

(d) -5

Paragraph for Question Nos. 19 to 21

Let t be a real number satisfying $2t^3 - 9t^2 + 30 - \lambda = 0$ where $t = x + \frac{1}{x}$ and $\lambda \in R$.

19. If the above cubic has three real and distinct solutions for x then exhaustive set of value of λ be :

(a) $3 < \lambda < 10$

(b) $3 < \lambda < 30$

(c) $\lambda = 10$

(d) None of these

20. If the cubic has exactly two real and distinct solutions for x then exhaustive set of values of λ be :

(a) $\lambda \in (-\infty, 3) \cup (30, \infty)$

(b) $\lambda \in (-\infty, -22) \cup (10, \infty) \cup \{3\}$

(c) $\lambda \in \{3, 30\}$

(d) None of these

21. If the cubic has four real and distinct solutions for x then exhaustive set of values of λ be:

(a) $\lambda \in (3, 10)$

(b) $\lambda \in \{3, 10\}$

(c) $\lambda \in (-\infty, -22) \cup (10, \infty)$

(d) None of these

Paragraph for Question Nos. 22 to 23

Consider a quadratic expression $f(x) = tx^2 - (2t - 1)x + (5t - 1)$

22. If f(x) can take both positive and negative values then t must lie in the interval

(a) $\left(\frac{-1}{4}, \frac{1}{4}\right)$

(b) $\left(-\infty, \frac{-1}{4}\right) \cup \left(\frac{1}{4}, \infty\right)$ (c) $\left(\frac{-1}{4}, \frac{1}{4}\right) - \{0\}$

(d) (-4,4

23. If f(x) is non-negative $\forall x \ge 0$ then t lies in the interval

(a) $\left[\frac{1}{5}, \frac{1}{4}\right]$

(b) $\left[\frac{1}{4}, \infty\right)$

(c) $\left[\frac{-1}{4}, \frac{1}{4}\right]$

(d) $\left[\frac{1}{5}, \infty\right)$

Answers

1.	(c)				1	4.			1 1			7.						10.	
11.	(d)	12.	(a)	13.	(a)	14.	(c)	15.	(ъ)	16.	(d)	17.	(ъ)	18.	(c)	19.	(c)	20.	(b)
21.	(a)	22.	(c)	23.	(d)														

Exercise-4: Matching Type Problems

1.

(A)	The least positive integer x, for which $\frac{2x-1}{2x^3+3x^2+x}$ is	(P)	4 3
(B)	positive, is equal to If the quadratic equation $3x^{2} + 2(a^{2} + 1)x + (a^{2} - 3a + 2) = 0$	(Q)	1
(C)	possess roots of opposite sign then a can be equal to The roots of the equation $\sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} = 1$ can be equal to	(R)	6
(D)	If the roots of the equation $x^4 - 8x^3 + bx^2 - cx + 16 = 0$ are all real and positive then $2(c-b)$ is equal to	(S)	16
		(T)	10

2. Given the inequality $ax + k^2 > 0$. The complete set of values of 'a' so that

/			
(A)	The inequality is valid for all values of x and k is	(P)	R
(B)	There exists a value of x such that the inequality is valid for any value of k is	(Q)	ф
(C)	There exists a value of k such that the inequality is valid for all values of x is	(R)	{0}
(D)	There exists values of x and k for which inequality is valid is	(S)	R -{0}
		(T)	{1}

3.

1			
(A)	The real root(s) of the equation $x^4 - 8x^2 - 9 = 0$ are	(P)	No real roots
(B)	The real root(s) of the equation $x^{2/3} + x^{1/3} - 2 = 0$ are	(Q)	-3, 3
(C)	The real root(s) of the equation $\sqrt{3x+1}+1=\sqrt{x}$ are	(R)	-8,1

			of	the	equation	(S)	0, 2
$9^{x} - 1$	$10(3^x) +$	9 = 0 are					

4.

(A)	If a, b are the roots of equation $x^2 + ax + b = 0$ $(a, b \in R)$, then the number of ordered pairs (a, b) is equal to	1	1
(B)	If $P = \csc\frac{\pi}{8} + \csc\frac{2\pi}{8} + \csc\frac{3\pi}{8} + \csc\frac{13\pi}{8} + \csc\frac{14\pi}{8} + \csc\frac{15\pi}{8}$ and $Q = 8\sin\frac{\pi}{18}\sin\frac{5\pi}{18}$ $\sin\frac{7\pi}{18}$, then $P + Q$ is equal to	(Q)	2
(C)	Let $a_1, a_2, a_3 \dots$ be positive terms of a G.P. and $a_4, 1, 2, a_{10}$ are the consecutive terms of another G.P. If $\prod_{i=2}^{12} a_i = 4^{\frac{m}{n}}$ where m and n are coprime, then $(m+n)$ equals		3
(D)	For $x, y \in R$, if $x^2 - 2xy + 2y^2 - 6y + 9 = 0$, then the value of $5x - 4y$ is equal to	(S)	15

Answers

```
1. A \rightarrow Q; B \rightarrow P; C \rightarrow R; D \rightarrow S

2. A \rightarrow Q; B \rightarrow S; C \rightarrow R; D \rightarrow P

3. A \rightarrow Q; B \rightarrow R; C \rightarrow P; D \rightarrow S

4. A \rightarrow Q; B \rightarrow P; C \rightarrow S; D \rightarrow R
```

Exercise-5: Subjective Type Problems

- 1. Let $f(x) = ax^2 + bx + c$ where a, b, c are integers. If $\sin \frac{\pi}{7} \cdot \sin \frac{3\pi}{7} + \sin \frac{5\pi}{7} \cdot \sin \frac{5\pi}{7} + \sin \frac{5\pi}{7} \cdot \sin \frac{\pi}{7} = f\left(\cos \frac{\pi}{7}\right)$, then find the value of f(2):
- **2.** Let a, b, c, d be distinct integers such that the equation (x-a)(x-b)(x-c)(x-d)-9=0 has an integer root 'r', then the value of a+b+c+d-4r is equal to:
- 3. Consider the equation $(x^2 + x + 1)^2 (m 3)(x^2 + x + 1) + m = 0$, where m is a real parameter. The number of positive integral values of m for which equation has two distinct real roots, is:
- **4.** The number of positive integral values of m, $m \le 16$ for which the equation given in the above questions has 4 distinct real root is:
- **5.** If the equation $(m^2 12)x^4 8x^2 4 = 0$ has no real roots, then the largest value of m is $p\sqrt{q}$ where p, q are coprime natural numbers, then p + q = 0
- **6.** The least positive integral value of 'x' satisfying $(e^x 2) \left(\sin \left(x + \frac{\pi}{4} \right) \right) (x \log_e 2) \left(\sin x \cos x \right) < 0 \text{ is :}$
- 7. The integral values of x for which $x^2 + 17x + 71$ is perfect square of a rational number are a and b, then |a b| =
- **8.** Let $P(x) = x^6 x^5 x^3 x^2 x$ and α , β , γ , δ are the roots of the equation $x^4 x^3 x^2 1 = 0$, then $P(\alpha) + P(\beta) + P(\gamma) + P(\delta) =$
- **9.** The number of real values of 'a' for which the largest value of the function $f(x) = x^2 + ax + 2$ in the interval [-2, 4] is 6 will be:
- **10.** The number of all values of n, (where n is a whole number) for which the equation $\frac{x-8}{n-10} = \frac{n}{x}$ has no solution.
- 11. The number of negative integral values of m for which the expression $x^2 + 2(m-1)x + m + 5$ is positive $\forall x > 1$ is:
- 12. If the expression $ax^4 + bx^3 x^2 + 2x + 3$ has the remainder 4x + 3 when divided by $x^2 + x 2$, then a + 4b = ...
- 13. Find the smallest value of k for which both the roots of equation $x^2 8kx + 16(k^2 k + 1) = 0$ are real, distinct and have values at least 4.
- **14.** If $x^2 3x + 2$ is a factor of $x^4 px^2 + q = 0$, then p + q = 0
- **15.** The sum of all real values of k for which the expression $x^2 + 2xy + ky^2 + 2x + k = 0$ can be resolved into linear factors is:
- **16.** The curve $y = (a+1)x^2 + 2$ meets the curve y = ax + 3, $a \ne -1$ in exactly one point, then $a^2 =$

- 17. Find the number of integral values of 'a' for which the range of function $f(x) = \frac{x^2 ax + 1}{x^2 3x + 2}$ is $(-\infty, \infty)$.
- **18.** When x^{100} is divided by $x^2 3x + 2$, the remainder is $(2^{k+1} 1)x 2(2^k 1)$, then k = 1
- 19. Let P(x) be a polynomial equation of least possible degree, with rational coefficients, having $\sqrt[3]{7} + \sqrt[3]{49}$ as one of its roots. Then the product of all the roots of P(x) = 0 is:
- **20.** The range of values k for which the equation $2\cos^4 x \sin^4 x + k = 0$ has at least one solution is $[\lambda, \mu]$. Find the value of $(9\mu + \delta)$.
- **21.** Let P(x) be a polynomial with real coefficient and $P(x) P'(x) = x^2 + 2x + 1$. Find P(1).
- **22.** Find the smallest positive integral value of a for which the greater root, of the equation $x^2 (a^2 + a + 1)x + a(a^2 + 1) = 0$ lies between the roots of the equation $x^2 a^2x 2(a^2 2) = 0$
- **23.** If the equation $x^4 + kx^2 + k = 0$ has exactly two distinct real roots, then the smallest integral value of |k| is:
- **24.** Let a, b, c, d be the roots of $x^4 x^3 x^2 1 = 0$. Also consider $P(x) = x^6 x^5 x^3 x^2 x$, then the value of P(a) + P(b) + P(c) + P(d) is equal to:
- **25.** The number of integral values of a, $a \in [-5, 5]$ for which the equation $x^2 + 2(a-1)x + a + 5 = 0$ has one root smaller than 1 and the other root greater than 3 is:
- **26.** The number of non-negative integral values of n, $n \le 10$ so that a root of the equation $n^2 \sin^2 x 2 \sin x (2n+1) = 0$ lies in interval $\left[0, \frac{\pi}{2}\right]$ is:
- **27.** Let $f(x) = ax^2 + bx + c$, where a, b, c are integers and a > 1. If f(x) takes the value p, a prime for two distinct integer values of x, then the number of integer values of x for which f(x) takes the value 2p is :
- **28.** If x and y are real numbers connected by the equation $9x^2 + 2xy + y^2 92x 20y + 244 = 0$, then the sum of maximum value of x and the minimum value of y is:
- **29.** Consider two numbers *a*, *b*, sum of which is 3 and the sum of their cubes is 7. Then sum of all possible distinct values of *a* is :
- **30.** If $y^2(y^2-6) + x^2 8x + 24 = 0$ and the minimum value of $x^2 + y^4$ is m and maximum value is M; then find the value of M 2m.
- 31. Consider the equation $x^3 ax^2 + bx c = 0$, where a, b, c are rational number, $a \ne 1$. It is given that x_1, x_2 and x_1x_2 are the real roots of the equation. If (b+c) = 2(a+1), then $x_1x_2\left(\frac{a+1}{b+c}\right) =$
- **32.** Let α satisfy the equation $x^3 + 3x^2 + 4x + 5 = 0$ and β satisfy the equation $x^3 3x^2 + 4x 5 = 0$, $\alpha, \beta \in R$, then $\alpha + \beta =$

- **33.** Let x, y and z are positive reals and $x^2 + xy + y^2 = 2$; $y^2 + yz + z^2 = 1$ and $z^2 + zx + x^2 = 3$. If the value of xy + yz + zx can be expressed as $\sqrt{\frac{p}{q}}$ where p and q are relatively prime positive integer find the value of p q:
- **34.** The number of ordered pairs (a, b), where a, b are integers satisfying the inequality $\min(x^2 + (a b)x + (1 a b)) > \max(-x^2 + (a + b)x (1 + a + b)) \forall x \in R$, is:
- **35.** The real value of x satisfying $\sqrt[3]{20x + \sqrt[3]{20x + 13}} = 13$ can be expressed as $\frac{a}{b}$ where a and b are relatively prime positive integers. Find the value of b?
- **36.** If the range of the values of a for which the roots of the equation $x^2 2x a^2 + 1 = 0$ lie between the roots of the equation $x^2 2(a+1)x + a(a-1) = 0$ is (p,q), then find the value of $\left(q \frac{1}{p}\right)$.
- **37.** Find the number of positive integers satisfying the inequality $x^2 10x + 16 < 0$.
- **38.** If $\sin \theta$ and $\cos \theta$ are the roots of the quadratic equation $ax^2 + bx + c = 0$ ($ac \ne 0$). Then find the value of $\frac{b^2 a^2}{ac}$.
- **39.** Let the inequality $\sin^2 x + a \cos x + a^2 \ge 1 + \cos x$ is satisfied $\forall x \in R$, for $a \in (-\infty, k_1] \cup [k_2, \infty)$, then $|k_1| + |k_2| =$
- **40.** α and β are roots of the equation $2x^2 35x + 2 = 0$. Find the value of $\sqrt{(2\alpha 35)^3 (2\beta 35)^3}$
- **41.** The sum of all integral values of 'a' for which the equation $2x^2 (1 + 2a)x + 1 + a = 0$ has a integral root.
- **42.** Let f(x) be a polynomial of degree 8 such that $F(r) = \frac{1}{r}$, $r = 1, 2, 3, \dots, 8, 9$, then $\frac{1}{F(10)} = \frac{1}{r}$
- **43.** Let α , β are two real roots of equation $x^2 + px + q = 0$, $p, q \in R$, $q \ne 0$. If the quadratic equation g(x) = 0 has two roots $\alpha + \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$ such that sum of its roots is equal to product of roots, then then number of integral values q can attain is:
- **44.** If $\cos A$, $\cos B$ and $\cos C$ are the roots of cubic $x^3 + ax^2 + bx + c = 0$, where A, B, C are the angles of a triangle then find the value of $a^2 2b 2c$.
- **45.** Find the number of positive integral values of k for which $kx^2 + (k-3)x + 1 < 0$ for at least one positive x.

Advancea	Problems	in	Mathematics	for	JEE
----------	----------	----	-------------	-----	-----

/			di.					Aı	ารง	vers	s								>
1.	9	2.	0	3.	1	4.	7	5.	5	6.	3	7.	3	8.	6	9.	0	10.	6
11.	0	12.	9	13.	2	14.	9	15.	2	16.	4	17.	0	18.	99	19.	56	20.	7
21.	2	22.	3	23.	1	24.	6	25.	4	26.	8	27.	0	28.	7	29.	3	30.	4
31.	1	32.	0	33.	5	34.	9	35.	5	36.	5	37.	5	38.	2	39.	3	40.	8
41.	1	42.	5	43.	3	44.	1	45.	0										

Chapter 9 - Sequence and Series

SEQUENCE AND SERIES

Exercise-1: Single Choice Prob

	*								
4	Exercise-1 : Single C	hoice Pro	hlems						-
*	Exercise 1 5 ligit C	HOICE FIC	DDICITIS						7.2
1.	If a, b, c are positive num is:	ibers and	a + b + c	= 1, then t	the max	imum val	ue of $(1-a)$	1 – b)(1 -	-c)
	(a) 1 (b) $\frac{2}{3}$		(c)	$\frac{8}{27}$		(d) $\frac{4}{9}$		
2.	If $xyz = (1-x)(1-y)(x(1-z) + y(1-x) + z(1-z))$		here 0	$\leq x, y, z$	≤ 1, tl	nen the	minimum	value	of
	(a) $\frac{3}{2}$	b) $\frac{1}{4}$		(c)	$\frac{3}{4}$		(d) $\frac{1}{2}$		
3.	If $\sec(\alpha - 2\beta)$, $\sec \alpha$, $\sec \alpha$ ($\beta \neq n\pi$; $n \in I$) the value		are in	arithmeti	cal pro	gression	then $\cos^2 \alpha$	$=\lambda\cos^2$	β
	(a) 1	b) 2		(c)	3		(d) $\frac{1}{2}$		
4.	Let a, b, c, d, e are non-ze G.P. and c, d, e are in H.I				numbe	rs. If a, b,	are in A.P.;	b, c, d are	e in
	(a) A.P.			(b)	G.P.				
	(c) H.P.		2020			g can be s			
5.	If $(m+1)^{th}$, $(n+1)^{th}$, as	$nd(r+1)^t$	th terms	of a non-	constan	t A.P. are	in G.P. and m	, n, r are	e in
	H.P., then the ratio of fir	st term of	the A.P t	o its com	mon di	fference is	: :		
	2	b) –n		(c)			(d) +n		
6.	If the equation $x^4 - 4x^3$	$+ax^2+b$	x+1=0	has four p	ositive	roots, the	n the value of	(a+b)i	s:
	(a) -4			(b)	2				
	(c) 6			(d)	can no	t be deter	mined		

7	If S_1 , S_2 and S_3 and	re the sums of first	n natural numbers,	their squares and their cubes
	respectively, then $\frac{S_1^2}{2}$	$\frac{{}^{4}S_{2}^{2} - S_{2}^{2}S_{3}^{2}}{S_{1}^{2} + S_{3}^{2}} =$		
	(a) 4	(b) 2	(c) 1	(d) 0
8.	If $S_n = \frac{1 \cdot 2}{3!} + \frac{2 \cdot 2^2}{4!}$	$+\frac{3\cdot 2^3}{5!}+\ldots$ upto n	terms then the sum	of the infinite terms is :
	(a) 1	(b) $\frac{2}{3}$	(c) e	(d) $\frac{\pi}{4}$
9.	If $\tan\left(\frac{\pi}{12} - x\right)$, $\tan\frac{\pi}{12}$	$\frac{\pi}{12}$, $\tan\left(\frac{\pi}{12} + x\right)$ in order	der are three consecu	tive terms of a G.P. then sum of
	all the solutions in [0, 314] is $k\pi$. The valu	ie of k is:	
	(a) 4950	(b) 5050	(c) 2525	(d) 5010
10.	Let $S_k = 1 + 2 + 3 +$	+ k and $Q_n = \frac{S}{S_n}$	$\frac{2}{1} \cdot \frac{S_3}{S_2 - 1} \cdot \frac{S_4}{S_2 - 1} \dots$	$\dots \frac{S_n}{S_n - 1}$, where $k, n \in \mathbb{N}$
		32	-1 33 -1 34 -1	$S_n - 1$
	$\lim_{n\to\infty}Q_n=$			
	(a) $\frac{1}{3}$	(b) 1	(c) 3	(d) 0
11.	l, m, n are the p^{th} , q	$q^{ m th}$ and $r^{ m th}$ term of a	G.P. all positive, then	$\begin{vmatrix} \log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1 \end{vmatrix}$ equals:
	/ \ 1	4 > 4		
	(a) -1	(b) 2	(c) 1	(d) 0
12.	The number of natu	ral numbers < 300 th		(d) 0 ut not by 9 is :
	The number of natu (a) 49	ral numbers < 300 that (b) 37	at are divisible by 6 b (c) 33	ut not by 9 is : (d) 16
	The number of natu	ral numbers < 300 th (b) 37 $y + z = 1$ then $\frac{1}{(1-x)^2}$	at are divisible by 6 b (c) 33	ut not by 9 is : (d) 16
13.	The number of natural (a) 49 If $x, y, z > 0$ and $x + 1$ (a) ≥ 8	ral numbers < 300 that (b) 37 $y + z = 1$ then $\frac{1}{(1-x)^2}$ (b) $\leq \frac{1}{8}$	at are divisible by 6 b (c) 33 xyz yz yz yz yz yz yz yz yz yz yz yz yz yz yz yz yz yz yz	ut not by 9 is : (d) 16 essarily. (d) None of these
13.	The number of natural (a) 49 If $x, y, z > 0$ and $x + 1$ (a) ≥ 8 If the roots of the	ral numbers < 300 that (b) 37 $y + z = 1 \text{ then } \frac{1}{(1 - x^2)^2}$ (b) $\leq \frac{1}{8}$ equation $px^2 + qx + 4$	at are divisible by 6 b (c) 33 xyz yz yz yz yz yz yz yz yz yz yz yz yz yz zz	ut not by 9 is : (d) 16 essarily. (d) None of these
13.	The number of natural (a) 49 If $x, y, z > 0$ and $x + 1$ (a) ≥ 8 If the roots of the	ral numbers < 300 that (b) 37 $y + z = 1$ then $\frac{1}{(1-x)^2}$ (b) $\leq \frac{1}{8}$	at are divisible by 6 b (c) 33 xyz yz yz yz yz yz yz yz yz yz yz yz yz yz zz	ut not by 9 is : (d) 16 essarily.
13. 14.	The number of natural (a) 49 If x , y , $z > 0$ and $x + 1$ (a) ≥ 8 If the roots of the α^2 , $4\alpha - 4$. Then the (a) 0	ral numbers < 300 that (b) 37 $y + z = 1 \text{ then } \frac{1}{(1 - x^2)^2}$ (b) $\leq \frac{1}{8}$ equation $px^2 + qx + 4$ e value of $2p + 4q + 7$ (b) 10	at are divisible by 6 b (c) 33 xyz yz yz yz zz zz zz zz	ut not by 9 is: (d) 16 essarily. (d) None of these er are in G.P., are of the form
13. 14.	The number of natural (a) 49 If $x, y, z > 0$ and $x + 1$ (a) ≥ 8 If the roots of the α^2 , $4\alpha - 4$. Then the (a) 0 Let x_1, x_2, x_3, \dots	ral numbers < 300 that (b) 37 $y + z = 1 \text{ then } \frac{1}{(1 - x)^2}$ (b) $\leq \frac{1}{8}$ equation $px^2 + qx + 4q + 7x$ (b) 10 $x_k \text{ be the divisor}$	at are divisible by 6 b (c) 33 xyz yz yz yz yz yz zz zz	ut not by 9 is: (d) 16 essarily. (d) None of these er are in G.P., are of the form
13. 14.	The number of natural (a) 49 If x , y , $z > 0$ and $x + 1$ (a) ≥ 8 If the roots of the α^2 , $4\alpha - 4$. Then the (a) 0	ral numbers < 300 that (b) 37 $y + z = 1 \text{ then } \frac{1}{(1 - x)^2}$ (b) $\leq \frac{1}{8}$ equation $px^2 + qx + 4q + 7x$ (b) 10 $x_k \text{ be the divisor}$	at are divisible by 6 b (c) 33 xyz yz yz yz yz yz zz zz	ut not by 9 is : (d) 16 essarily. (d) None of these
13. 14.	The number of natural (a) 49 If $x, y, z > 0$ and $x + 1$ (a) ≥ 8 If the roots of the α^2 , $4\alpha - 4$. Then the (a) 0 Let x_1, x_2, x_3, \dots	ral numbers < 300 that (b) 37 $y + z = 1 \text{ then } \frac{1}{(1 - x)^2}$ (b) $\leq \frac{1}{8}$ equation $px^2 + qx + 4q + 7x$ (b) 10 $x_k \text{ be the divisor}$	at are divisible by 6 b (c) 33 xyz yz yz yz yz yz zz zz	ut not by 9 is: (d) 16 essarily. (d) None of these er are in G.P., are of the form
13. 14.	The number of natural (a) 49 If $x, y, z > 0$ and $x + 1$ (a) ≥ 8 If the roots of the α^2 , $4\alpha - 4$. Then the (a) 0 Let $x_1, x_2, x_3, \ldots, x_1 + x_2 + x_3 + \ldots$	ral numbers < 300 the (b) 37 $y + z = 1$ then $\frac{1}{(1 - x)^2}$ (b) $\leq \frac{1}{8}$ equation $px^2 + qx + 4$ evalue of $2p + 4q + 7$ (b) 10 $x = x_k$ be the divisor $x = x_k$	at are divisible by 6 b (c) 33 xyz $(1-y)(1-z)$ is necess (c) 1 $x = 0$, where $2p$, q , $2x$ $x = 0$ is: (c) 14 (d) s of positive integer $\frac{1}{x_i}$ is equal to:	ut not by 9 is: (d) 16 essarily. (d) None of these er are in G.P., are of the form (d) 18 er n (including 1 and n). If
13. 14.	The number of natural (a) 49 If $x, y, z > 0$ and $x + 1$ (a) ≥ 8 If the roots of the α^2 , $4\alpha - 4$. Then the (a) 0 Let $x_1, x_2, x_3, \ldots, x_1 + x_2 + x_3 + \ldots$	ral numbers < 300 the (b) 37 $y + z = 1$ then $\frac{1}{(1 - x)^2}$ (b) $\leq \frac{1}{8}$ equation $px^2 + qx + 4$ evalue of $2p + 4q + 7$ (b) 10 $x = x_k$ be the divisor $x = x_k$	at are divisible by 6 b (c) 33 xyz $(1-y)(1-z)$ is necess (c) 1 $x = 0$, where $2p$, q , $2x$ $x = 0$ is: (c) 14 (d) s of positive integer $\frac{1}{x_i}$ is equal to:	ut not by 9 is: (d) 16 essarily. (d) None of these er are in G.P., are of the form (d) 18 er n (including 1 and n). If
13. 14.	The number of natural (a) 49 If $x, y, z > 0$ and $x + 1$ (a) ≥ 8 If the roots of the α^2 , $4\alpha - 4$. Then the (a) 0 Let $x_1, x_2, x_3, \ldots, x_1 + x_2 + x_3 + \ldots$	ral numbers < 300 the (b) 37 $y + z = 1$ then $\frac{1}{(1 - x)^2}$ (b) $\leq \frac{1}{8}$ equation $px^2 + qx + 4$ evalue of $2p + 4q + 7$ (b) 10 $x = x_k$ be the divisor $x = x_k$	at are divisible by 6 b (c) 33 xyz $(1-y)(1-z)$ is necess (c) 1 $x = 0$, where $2p$, q , $2x$ $x = 0$ is: (c) 14 (d) s of positive integer $\frac{1}{x_i}$ is equal to:	ut not by 9 is: (d) 16 essarily. (d) None of these er are in G.P., are of the form (d) 18 er n (including 1 and n). If

					_				-
16.	If a ₁	$, a_2, a_3, \ldots, a_n$	are ii	h H.P. and $f(k)$	$=\sum_{r=1}^n a_r -$	-a _k then	$\frac{a_1}{f(1)}, \frac{a_2}{f(2)},$	$\frac{a_3}{f(3)},\ldots$	$\cdot, \frac{a_n}{f(n)}$ are
	in:								
	(a)		200	G.P.		H.P.) None of	`
17.	lfα,	β be roots of the ϵ	quat	ion 375 x^2 – 25	5x - 2 = 0	and $s_n =$	$\alpha^n + \beta^n$, the	$ \lim_{n\to\infty}\left \sum_{r=1}^n\right $	S_r =
	(a)	1 12	(b)	14	(c)	$\frac{1}{3}$	(d) 1	
18.	If a_i , $i = 1, 2, 3, 4$ be four real members of the same sign, then the minimum value of								
	$\sum \frac{a_i}{a_j}, i, j \in \{1, 2, 3, 4\}, i \neq j \text{ is } :$								
	(a)	6	(b)	8	(c)	12	(d)	24	
19.	Give	en that $x, y, z = 4xy + 4y^2 + 2z^2$	are is eq	positive reals ual to :			= 32. The	minimum	value of
	(a)	64	(b)	256	(c)	96	(d)	216	
20.	In a	n A.P. five times th	ne fif	th term is equal	to eight t	imes the e	eighth term.	Then the	sum of the
	In an A.P., five times the fifth term is equal to eight times the eighth term. Then the sum of the first twenty five terms is equal to:								
	(a)	25	(b)	25 2	(c)			0	
21.	1. Let α , β be two distinct values of x lying in $[0, \pi]$ for which $\sqrt{5} \sin x$, $10 \sin x$, $10(4 \sin^2 x + 1)$ are								
	3 consecutive terms of a G.P. Then minimum value of $ \alpha - \beta $ =								
	(a)	10		$\frac{\pi}{5}$		$\frac{2\pi}{5}$		$\frac{3\pi}{5}$	
22.	the	n infinite G.P., the s middle term is mu ns of G.P. is :	um c ultipl	of first three terried by 5, the re	ms is 70. I esulting te	f the extre	eme terms ar an A.P. the	e multiplie n the sum	d by 4 and to infinite
		120	(b)	40	(c)	160	(ď	80	
23.		value of the sum					(-)	, 55	
	(a)		(b)		(c)		_) 2	
24.	4. Let p, q, r are positive real numbers, such that $27pqr \ge (p+q+r)^3$ and $3p+4q+5r=12$, then								
	p^3	$+q^4+r^5=$							
	(a)		(b)	6	(c)	2	(d)) 4	
25.	Fine	the sum of the in	finite						
	(a)	$\frac{1}{3}$	(b)	14	(c)	$\frac{1}{5}$	(d)	$\frac{2}{3}$	

(d) $2k - \frac{9}{3}$

(d) 14

(d) -4

(d) none of these

180

distinct then $S_c =$

(c) $\left[-1, -\frac{1}{8}\right] \cup \left(\frac{1}{8}, 1\right]$

(a) the number of terms is 17

(c) the number of terms is 13

which area of A_n is less than 1.

30. Let $S_k = \sum_{i=0}^{\infty} \frac{1}{(k+1)^i}$, then $\sum_{k=1}^{n} k S_k$ equal:

32. If $(1.5)^{30} = k$, then the value of $\sum_{n=2}^{29} (1.5)^n$, is:

(b) k+1

(b) 12

(b) 2^4

(b) 10

34. The third term of a G.P. is 2. Then the product of the first five terms, is:

35. The sum of first n terms of an A.P. is $5n^2 + 4n$, its common difference is:

(c) 2k+7

(c) 13

(c) 3

33. n arithmetic means are inserted between 7 and 49 and their sum is found to be 364, then n is:

(b) c^{3}

(a) c^2

(a) (-8, 0)

(a) 2k-3

(a) 9

36.	36. If $x + y = a$ and $x^2 + y^2 = b$, then the value of $(x^3 + y^3)$, is:						
	(a) ab	(b) $a^2 + b$	(c) $a + b^2$	(d) $\frac{3ab - a^3}{2}$			
37.	If $S_1, S_2, S_3,, S_n$	are the sum of infi	nite geometric series	whose first terms are			
		nd whose common ratio					
	(-		5 5 2111	1			
	$\left\{ \frac{1}{S_1 S_2 S_3} + \frac{1}{S_2 S_3 S_4} + \dots \right\}$	$\frac{1}{S_3S_4S_5}$ + upto infi	nite terms =				
	(a) $\frac{1}{15}$	(b) $\frac{1}{60}$	(c) $\frac{1}{12}$	(d) $\frac{1}{3}$			
38.	Sequence $\{t_n\}$ of posit	tive terms is a G.P. If t_6 ,	2, 5, t_{14} form another G	P.P. in that order,			
		$_3 \dots t_{18} t_{19}$ is equal to :					
	(a) 10^9	(b) 10 ¹⁰	(c) $10^{17/2}$	(d) $10^{19/2}$			
39.	The minimum value o	$f(A^2+A+1)(B^2+B+$	$1)(C^2 + C + 1)(D^2 + D + C)$	+1) where A, B, C, D > 0			
V			ABCD	Wildred 11, 25, 6, 2 7 6			
	is:	. 1					
	(a) $\frac{1}{3^4}$	(b) $\frac{1}{2^4}$	(c) 2 ⁴	(d) 3 ⁴			
40.	If $\sum_{1}^{20} r^3 = a$, $\sum_{1}^{20} r^2 = b$	then sum of products of	f 1, 2, 3, 4 20 taking	g two at a time is :			
	(a) $\frac{a-b}{2}$	(b) $\frac{a^2-b^2}{2}$	(c) a-b	(d) $a^2 - b^2$			
41.	The sum of the first 2 difference is :	n terms of an A.P. is x ar	nd the sum of the next	n terms is y, its common			
	(a) $\frac{x-2y}{}$	(b) $\frac{2y-x}{3n^2}$	(c) $\frac{x-2y}{}$	(d) $\frac{2y-x}{x}$			
	SIL	0.1		OIL .			
42.	The number of non-ne	egative integers 'n' satisf	$ying n^2 = p + q and n^3$	$= p^2 + q^2$ where p and q			
	are integers.		(2 m = 1				
	(a) 2	(b) 3	(c) 4	(d) Infinite			
43.	coloured red and the	angular regions are cold	oured alternately green	or of the smallest circle is a and red, so that no two egions in sq. cm is equals			
	(a) 1000π	(b) 5050π	(c) 4950π	(d) 5151π			
44.	1 Table 1 Tabl			etric sequence, then the			
	number of integers th	at satisfy the system of i	inequalities $x^2 - x > 6a$	and $ x < k^2$ is:			
	(a) 193	(b) 194	(c) 195	(d) 196			
	0.50 (52)						

45. Let T_r be the r^{th} term of an A.P. whose first term is $-\frac{1}{2}$ and common difference is 1, then

$$\sum_{r=1}^n \sqrt{1+T_rT_{r+1}T_{r+2}T_{r+3}} \, = \,$$

- (b) $\frac{n(n+1)(2n+1)}{6} \frac{5n}{4} + \frac{1}{4}$
(d) $\frac{n(n+1)(2n+1)}{12} \frac{5n}{8} + 1$
- (a) $\frac{n(n+1)(2n+1)}{6} \frac{5n}{4}$
(c) $\frac{n(n+1)(2n+1)}{6} \frac{5n}{4} + \frac{1}{2}$
- **46.** If $\sum_{r=1}^{n} T_r = \frac{n(n+1)(n+2)}{3}$, then $\lim_{n\to\infty} \sum_{r=1}^{n} \frac{2008}{T_r} = \frac{n(n+1)(n+2)}{n+2}$

- (d) 8032
- (a) 2008 (b) 3012 (c) 4016 **47.** The sum of the infinite series, $1^2 \frac{2^2}{5} + \frac{3^2}{5^2} \frac{4^2}{5^3} + \frac{5^2}{5^4} \frac{6^2}{5^5} + \dots$ is :
 - (a) $\frac{1}{2}$

- (b) $\frac{25}{24}$ (c) $\frac{25}{54}$ (d) $\frac{125}{252}$
- **48.** The absolute term in $P(x) = \sum_{r=1}^{n} \left(x \frac{1}{r}\right) \left(x \frac{1}{r+1}\right) \left(x \frac{1}{r+2}\right)$ as n approaches to infinity is :
- (b) $\frac{-1}{3}$
- (c) $\frac{1}{4}$ (d) $\frac{-1}{4}$
- **49.** Let a, b, c are positive real numbers such that $p=a^2b+ab^2-a^2c-ac^2$; $q=b^2c+bc^2-a^2b-ab^2$ and $r = ac^2 + a^2c - cb^2 - bc^2$ and the quadratic equation $px^2 + qx + r = 0$ has equal roots; then a, b, c are in:

- **50.** If T_k denotes the k^{th} term of an H.P. from the beginning and $\frac{T_2}{T_6} = 9$, then $\frac{T_{10}}{T_4}$ equals:
 - (a) $\frac{17}{5}$
- (b) $\frac{5}{17}$
- (c) $\frac{7}{10}$
- **51.** Number of terms common to the two sequences 17, 21, 25,, 417 and 16, 21, 26,, 466
 - (a) 19

- **52.** The sum of the series $1 + \frac{2}{3} + \frac{1}{3^2} + \frac{2}{3^3} + \frac{1}{3^4} + \frac{2}{3^5} + \frac{1}{3^6} + \frac{2}{3^7} + \dots$ upto infinite terms is equal

to:

- (a) $\frac{15}{8}$

- (b) $\frac{8}{15}$ (c) $\frac{27}{8}$ (d) $\frac{21}{8}$
- **53.** The coefficient of x^8 in the polynomial (x-1)(x-2)(x-3)....(x-10) is:
 - (a) 2640
- (b) 1320
- (c) 1370
- (d) 2740

54.	Let $\alpha = \lim_{n \to \infty} \frac{(1^3 - 1^2)}{n}$	$\frac{+(2^3-2^2)++(n^3-n^2)}{n^4}$	$\frac{2}{2}$, then α is equal to :	
	(a) $\frac{1}{3}$	(b) $\frac{1}{4}$	(c) $\frac{1}{2}$	(d) non-existent
55.	If $16x^4 - 32x^3 + ax^2 + ax^2 + ax^3 + ax^4 + ax$	$bx + bx + 1 = 0$, $a, b \in R$ has	positive real roots only	then $a - b$ is equal to:
	(a) -32	(b) 32	(c) 49	(d) -49
56.	If ABC is a triangle an	ad $\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ ar	e in H.P., then the min	imum value of $\cot \frac{B}{2} =$
	(a) $\sqrt{3}$	(b) 1	(c) $\frac{1}{\sqrt{2}}$	(d) $\frac{1}{\sqrt{3}}$
57.	If α and β are the roots	of the quadratic equation	$14x^2 + 2x - 1 = 0$ then	the value of $\sum_{r=1}^{\infty} (\alpha^r + \beta^r)$
	is:			
_ =	(a) 2	(b) 3 $2^2 + 2(4)^2 + 3(6)^2 + \dots$	(c) 6	(d) 0
58.			upto 10 terms is equ	al to:
	(a) 11300		(c) 12300	(d) 11200
59.		real numbers such that a	a + b = 6, then the mini	mum value of $\left(\frac{4}{a} + \frac{1}{b}\right)$ is
	equal to: (a) $\frac{2}{3}$	(b) $\frac{1}{3}$	(c) 1	(d) $\frac{3}{2}$
60.	The first term of	an infinite G.P. is the	he value of x sa	atisfying the equation
	$\log_4(4^x - 15) + x - 2 =$	= 0 and the common ratio	o is $\cos\left(\frac{2011\pi}{3}\right)$ The s	sum of G.P. is :
	(a) 1	(b) $\frac{4}{3}$	(c) 4	(d) 2
61.		numbers, then the minin	num value of $\frac{a^4 + b^4}{abc}$	$\frac{-c^2}{}$ is:
		(b) $2^{3/4}$	(c) $\sqrt{2}$	(d) $2\sqrt{2}$
62.	If $xy = 1$; then minim	um value of $x^2 + y^2$ is:		
	(a) 1	(b) 2	(c) $\sqrt{2}$	(d) 4
63.	Find the value of $\frac{2}{1^3}$ +	$\frac{6}{1^3 + 2^3} + \frac{12}{1^3 + 2^3 + 3^3}$	$+\frac{20}{1^3+2^3+3^3+4^3}+$	upto 60 terms :
	(a) 2	(b) $\frac{1}{2}$	(c) 4	(d) $\frac{1}{4}$

64. Evaluate: $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)(n+3)....(n+k)}$

(a)
$$\frac{1}{(k-1)(k-1)!}$$
 (b) $\frac{1}{k \cdot k!}$

(b)
$$\frac{1}{k \cdot k!}$$

(c)
$$\frac{1}{(k-1)k!}$$

(d)
$$\frac{1}{k!}$$

65. Consider two positive numbers a and b. If arithmetic mean of a and b exceeds their geometric mean by 3/2 and geometric mean of a and b exceeds their harmonic mean by 6/5 then the value of $a^2 + b^2$ will be:

66. Sum of first 10 terms of the series, $S = \frac{7}{2^2 \cdot 5^2} + \frac{13}{5^2 \cdot 8^2} + \frac{19}{8^2 \cdot 11^2} + \dots$ is:

(a)
$$\frac{255}{1024}$$

(b)
$$\frac{88}{1024}$$
 (c) $\frac{264}{1024}$ (d) $\frac{85}{1024}$

(c)
$$\frac{264}{1024}$$

(d)
$$\frac{85}{1024}$$

67. $\sum_{r=1}^{10} \frac{r}{1-3r^2+r^4} =$

(a)
$$-\frac{50}{109}$$
 (b) $-\frac{54}{109}$ (c) $-\frac{55}{111}$ (d) $-\frac{55}{109}$

(b)
$$-\frac{54}{109}$$

(c)
$$-\frac{55}{111}$$

(d)
$$-\frac{55}{109}$$

68. Let r^{th} term t_r of a series is given by $t_r = \frac{r}{1+r^2+r^4}$. Then $\lim_{n\to\infty} \sum_{r=1}^n t_r$ is equal to:

(a)
$$\frac{1}{2}$$

(d) $\frac{1}{-}$

69. The sum of the series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ to infinite terms, is:

(a)
$$\frac{31}{12}$$

(b)
$$\frac{41}{16}$$

(c)
$$\frac{45}{16}$$

70. The third term of a G.P. is 2. Then the product of the first five terms, is:

(a)
$$2^3$$

(d) none of these

71. If $x_1, x_2, x_3, \ldots, x_{2n}$ are in A.P., then $\sum_{r=1}^{2n} (-1)^{r+1} x_r^2$ is equal to:

(a)
$$\frac{n}{(2n-1)}(x_1^2-x_{2n}^2)$$

(b)
$$\frac{2n}{(2n-1)}(x_1^2-x_{2n}^2)$$

(c)
$$\frac{n}{n-1}(x_1^2-x_{2n}^2)$$

(d)
$$\frac{n}{2n+1}(x_1^2-x_{2n}^2)$$

72. Let two numbers have arithmatic mean 9 and geometric mean 4. Then these numbers are roots of the equation:

(a)
$$x^2 + 18x + 16 = 0$$

(b)
$$x^2 - 18x - 16 = 0$$

(c)
$$x^2 + 18x - 16 = 0$$

(d)
$$x^2 - 18x + 16 = 0$$

73. If p and q are positive real numbers such that $p^2 + q^2 = 1$, then the maximum value	ie of (n	um value of	p+a) is:
--	----------	-------------	----------

- (a) 2
- (c) $\frac{1}{\sqrt{2}}$
- (d) $\sqrt{2}$

74. A person has to count 4500 currency notes. Let a_n denote the number of notes he counts in the n^{th} minute. If $a_1 = a_2 = \dots = a_{10} = 150$ and $a_{10}, a_{11}, a_{12}, \dots$ are in A.P. with common difference -2, then the time taken by him to count all notes is:

- (a) 34 minutes
- (b) 24 minutes
- (c) 125 minutes
- (d) 35 minutes
- **75.** A non constant arithmatic progression has common difference d and first term is (1 ad). If the sum of the first 20 terms is 20, then the value of a is equal to:

76. The value of $\sum_{n=3}^{\infty} \frac{1}{n^5 - 5n^3 + 4n} =$

(a) $\frac{1}{120}$ (b) $\frac{1}{96}$ (c) $\frac{1}{24}$ (d) $\frac{1}{144}$ 77. Find the value of $\frac{2}{1^3} + \frac{6}{1^3 + 2^3} + \frac{12}{1^3 + 2^3 + 3^3} + \frac{20}{1^3 + 2^3 + 3^3 + 4^3} + \dots$ up to infinite terms:

- (a) 2
- (c) 4
- (d) $\frac{1}{4}$

78. The minimum value of the expression $2^x + 2^{2x+1} + \frac{5}{2^x}$, $x \in R$ is:

- (a) 7
- (b) $(7.2)^{1/7}$
- (c) 8
- (d) $(3.10)^{1/3}$

79. The value of $\sum_{r=1}^{\infty} \frac{(4r+5)5^{-r}}{r(5r+5)}$ is:

- (b) $\frac{2}{5}$
- (c) $\frac{1}{25}$

186

Advanced Problems in Mathematics for JEE

Answers 1. (c) 2. (c) 3. (b) 4. (b) 5. (a) 6. (b) 7. (d) 8. (a) 9. (a) 10. (c) 11. (d) 12. (c) 13. (b) 14. (c) 15. (b) 16. (c) 17. (a) 18. 19. (c) (c) 20. (d) (b) 22. (d) 23. (d) 24. (a) 25. (a) 26. (b) 27. (d) 28. (b) 29. (d) 30. (d) 31. (a) 32. (d) 33. (c) 34. 35. (c) (b) 36. (d) 37. (b) 38. (d) 39. (d) 40. (a) **42.** (b) 41. (b) 43. (b) (a) 45. (c) **46.** (a) 47. (c) 48. (d) 49. (c) **50.** (b) 51. (b) **52.** (a) 53. (b) 54. (b) 55. (b) **56.** (a) 57. (d) 58. (b) 59. (d) 60. (c) **62.** (b) (d) **63.** (c) 61. 64. (c) (d) 66. (d) 67. (d) 68. 69. (a) (d) 70. (c) 71. 74. (a) 75. (b) 76. (b) 78. (c) (a)

Exercise-2: One or More than One Answer is/are Correct

- 1. If the first and $(2n-1)^{th}$ terms of an A.P., G.P. and H.P. with positive terms are equal and their n^{th} terms are a, b and c respectively, then which of the following options must be correct :
 - (a) a+c=2b

(b) $a \ge b \ge c$

(c) $\frac{2ac}{a+c} = b$

- (d) $ac = b^2$
- **2.** Let a, b, c are distinct real numbers such that expression $ax^2 + bx + c$, $bx^2 + cx + a$ and $cx^2 + ax + b$ are always positive then possible value(s) of $\frac{a^2 + b^2 + c^2}{ab + bc + ca}$ may be :
 - (a) 1
- (c) 3

- **3.** If a, b, c are in H.P., where a > c > 0, then :
 - (a) $b > \frac{a+c}{2}$

(b) $\frac{1}{a-b} - \frac{1}{b-c} < 0$

(c) $ac > b^2$

- (d) bc(1-a), ac(1-b), ab(1-c) are in A.P.
- **4.** In an A.P., let T_r denote r^{th} term from beginning, $T_p = \frac{1}{q(p+q)}$, $T_q = \frac{1}{p(p+q)}$, then:
 - (a) $T_1 = \text{common difference}$
- (b) $T_{p+q} = \frac{1}{pq}$

(c) $T_{pq} = \frac{1}{p+a}$

- (d) $T_{p+q} = \frac{1}{n^2 a^2}$
- 5. Which of the following statement(s) is(are) correct?
 - (a) Sum of the reciprocal of all the n harmonic means inserted between a and b is equal to ntimes the harmonic mean between two given numbers a and b.
 - (b) Sum of the cubes of first n natural number is equal to square of the sum of the first nnatural numbers.
 - (c) If $a, A_1, A_2, A_3, \ldots, A_{2n}, b$ are in A.P. then $\sum_{i=1}^{2n} A_i = n(a+b)$.
 - (d) If the first term of the geometric progression $g_1, g_2, g_3, \ldots, \infty$ is unity, then the value of the common ratio of the progression such that $(4g_2 + 5g_3)$ is minimum equals $\frac{2}{\epsilon}$.
- **6.** If a, b, c are in 3 distinct numbers in H.P., a, b, c > 0, then :
 - (a) $\frac{b+c-a}{a}$, $\frac{c+a-b}{b}$, $\frac{a+b-c}{c}$ are in A.P. (b) $\frac{b+c}{a}$, $\frac{c+a}{b}$, $\frac{a+b}{c}$ are in A.P.

(c) $a^5 + c^5 \ge 2b^5$

(d) $\frac{a-b}{b-c} = \frac{a}{c}$

7. All roots of equation $x^5 - 40x^4 + \alpha x^3 + \beta x^2 + \gamma x + \delta = 0$ are in G.P. If the sum of their reciprocals is 10, then δ can be equal to :						
reciprocals	is 10, then 8 can be equal to	•	1			
(a) 32	(b) -32	(c) $\frac{1}{32}$	(d) $-\frac{1}{32}$			
8. Let a_1, a_2, a_3, a_4, a_5	a_3, \dots be a sequence of no $a_2^2 + 2a_{k+1}x + a_{k+2}$	on-zero real numbers w	hich are in A.P. for $k \in N$. Let			
(a) $f_{L}(x)$:	= 0 has real roots for each k	∈ N.				
	$f f_k(x) = 0$ has one root in c					
	emmon roots of $f_1(x) = 0$, f_2		from an A.P.			
(d) None o		(11) - 4) /3 (11) - 4)				
9. Given <i>a</i> , <i>b</i> ,		G.P. and c, d, e are in H.F.	? If $a = 2$ and $e = 18$, then the			
(a) 9	(b) −6	(c) 6	(d) -9			
10. The number $(c + 3)$ in th	c a , b , c in that order form a that order form a three term c	hree term A.P and $a + b +$ G.P. All possible values of	$c = 60$. The number $(a-2)$, b, $(a^2 + b^2 + c^2)$ is/are:			
(a) 1218	(b) 1208	(c) 1288	(d) 1298			
	1) + $(x^2 + 2x + 3) + (x^2 + 3x^2 +$	$(x+5)++(x^2+20x)$	x + 39 = 4500, then x is equal			
to:	(b) −10	(c) 20.5	(d) -20.5			
(a) 10			ns have their usual meaning),			
	181+1440 +100 +90 =	14400c, (where notation	ns nave their usual meaning),			
then:		(h) A . D . C				
(a) $a > b >$		(b) $A < B < C$				
(c) Area of	$\Delta ABC = \frac{3\sqrt{3}}{8}$	(d) Triangle AL	BC is right angled			
	(-/		hmatic progression such that			
$\cos x + \cos y$	$+\cos z = 1$ and $\sin x + \sin y$	$y + \sin z = \frac{1}{\sqrt{2}}$, then wh	hich of the following is/are			
correct?						
(a) $\cot y =$	$\sqrt{2}$	(b) $\cos(x-y)$:	$=\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{2}}$			
(c) tan 2y =	$=\frac{2\sqrt{2}}{3}$	(d) $\sin(x-y)$ +	$-\sin(y-z)=0$			
14. If the number	ers 16, 20, 16, d form a A.G.	P, then d can be equal to	D.			
(a) 3	(b) 11	(c) -8	(d) -16			

15. Given
$$\frac{\underbrace{\frac{1000....01}{nzeroes}}}{\underbrace{\frac{1000....01}{(n+1)zeroes}}} < \underbrace{\frac{1000....01}{mzeroes}}_{(m+1)zeroes}, \text{ then which of the following is true}$$

- (a) m+1 < n
- (c) m < n + 1
- (d) m > n + 1
- **16.** If $S_r = \sqrt{r + \sqrt{r + \sqrt{r + \sqrt{r + \sqrt{\dots \infty}}}}}$, r > 0, then which of the following is/are correct.
 - (a) S_2, S_6, S_{12}, S_{20} are in A.P.
- (b) S_4, S_9, S_{16} are irrational
- (c) $(2S_3 1)^2$, $(2S_4 1)^2$, $(2S_5 1)^2$ are in A.P. (d) S_2 , S_{12} , S_{56} are in G.P.
- 17. Consider the A.P. 50, 48, 46, 44, If S_n denotes the sum to n terms of this A.P., then
 - (a) S_n is maximum for n = 25
- (b) the first negative terms is 26th term
- (c) the first negative term is 27th term
- (d) the maximum value of S_n is 650
- **18.** Let S_n be the sum to n terms of the series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \frac{9}{1^2 + 2^2 + 3^2 + 4^2}$ +..... then
 - (a) $S_5 = 5$
- (b) $S_{50} = \frac{100}{17}$ (c) $S_{1001} = \frac{1001}{97}$ (d) $S_{\infty} = 6$
- 19. For $\triangle ABC$, if $81 + 144a^4 + 16b^4 + 9c^4 = 144abc$, (where notations have their usual meaning), then
 - (a) a > b > c

- (b) A < B < C
- (c) Area of $\triangle ABC = \frac{3\sqrt{3}}{\Omega}$

(d) Triangle ABC is right angled

2/	1				Ansv	vers	3				
1.	(b, d)	2.	(b, c)	3.	(b, c, d)	4.	(a, b, c)	5.	(b, c)	6.	(a, b, c, d)
7.	(a, b)	8.	(a, b)	9.	(b, c)	10,	(b, d)	11.	(a, d)	12.	(b, c, d)
13.	(a, b)	14.	(b)	15.	(b, c)	16.	(a, b, c, d)	17.	(a, c, d)	18.	(a, b, d)
19.	(b, c, d)										

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

The first four terms of a sequence are given by $T_1 = 0$, $T_2 = 1$, $T_3 = 1$, $T_4 = 2$. The general term is given by $T_n = A\alpha^{n-1} + B\beta^{n-1}$ where A, B, α , β are independent of n and A is positive.

- **1.** The value of $(\alpha^2 + \beta^2 + \alpha\beta)$ is equal to :
 - (a) 1
- (b) 2
- (c) 5
- (d) 4

- **2.** The value of $5(A^2 + B^2)$ is equal to :
 - (a) 2
- (b) 4
- (c) 6
- (d) 8

Paragraph for Question Nos. 3 to 4

There are two sets A and B each of which consists of three numbers in A.P. whose sum is 15. D and d are their respective common differences such that D - d = 1, D > 0. If $\frac{p}{q} = \frac{7}{8}$ where p and q are the product of the numbers in those sets A and B respectively.

- **3.** Sum of the product of the numbers in set A taken two at a time is :
 - (a) 51
- (b) 71
- (c) 74
- (d) 86
- **4.** Sum of the product of the numbers in set B taken two at a time is:
 - (a) 52
- (b) 54
- (c) 64
- (d) 74

Paragraph for Question Nos. 5 to 7

Let x, y, z are positive reals and x + y + z = 60 and x > 3.

- **5.** Maximum value of (x-3)(y+1)(z+5) is :
 - (a) (17) (21) (25)
- (b) (20) (21) (23)
- (c) (21) (21) (21)
- (d) (23) (19) (15)

- **6.** Maximum value of (x-3)(2y+1)(3z+5) is :
 - (a) $\frac{(355)^3}{3^3 \cdot 6^2}$
- (b) $\frac{(355)^3}{3^3 \cdot 6^3}$
- (c) $\frac{(355)^3}{3^2 \cdot 6^3}$
- (d) None of these

- 7. Maximum value of xyz is:
 - (a) 8×10^3
- (b) 27×10^3
- (c) 64×10^3
- (d) 125×10^3

Paragraph for Question Nos. 8 to 10

Two consecutive numbers from n natural numbers 1, 2, 3,..., n are removed. Arithmetic mean of the remaining numbers is $\frac{105}{4}$.

8. The value of n is:

- (a) 48
- (b) 50
- (c) 52
- (d) 49

9. The G.M. of the removed numbers is:

- (a) $\sqrt{30}$
- (b) $\sqrt{42}$
- (c) √56
- (d) $\sqrt{72}$

10. Let removed numbers are x_1 , x_2 then $x_1 + x_2 + n =$

- (a) 61
- (b) 63
- (c) 65
- (d) 69

Paragraph for Question Nos. 11 to 13

The sequence $\{a_n\}$ is defined by formula $a_0 = 4$ and $a_{n+1} = a_n^2 - 2a_n + 2$ for $n \ge 0$. Let the sequence $\{b_n\}$ is defined by formula $b_0 = \frac{1}{2}$ and $b_n = \frac{2a_0a_1a_2...a_{n-1}}{a_n} \ \forall \ n \ge 1$.

- **11.** The value of a_{10} is equal to :
 - (a) $1 + 2^{1024}$
- (b) 4¹⁰²⁴
- (c) $1+3^{1024}$
- (d) 6^{1024}

- **12.** The value of *n* for which $b_n = \frac{3280}{3281}$ is :
 - (a) 2
- (b) 3
- (c) 4
- (d) 5
- **13.** The sequence $\{b_n\}$ satisfies the recurrence formula :
 - (a) $b_{n+1} = \frac{2b_n}{1-b_n^2}$

(b) $b_{n+1} = \frac{2b_n}{1+b_n^2}$

 $(c) \frac{b_n}{1+2b_n^2}$

(d) $\frac{b_n}{1-2b_n^2}$

Paragraph for Question Nos. 14 to 15

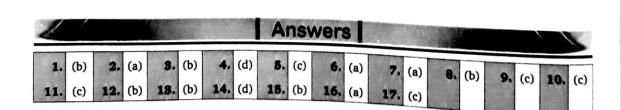
Let $f(n) = \sum_{r=2}^{n} \frac{r}{{}^{r}C_{2}} {}^{r+1}C_{2}$, $a = \lim_{n \to \infty} f(n)$ and $x^{2} - \left(2a - \frac{1}{2}\right)x + t = 0$ has two positive roots α and β .

- **14.** If value of f(7) + f(8) is $\frac{p}{q}$ where p and q are relatively prime, then (p-q) is :
 - (a) 53
- (b) 55
- (c) 57
- (d) 59

- **15.** Minimum value of $\frac{4}{\alpha} + \frac{1}{\beta}$ is :
 - (a) 2
- (b) 6
- (c) 3
- (d) 4

192

Paragraph for Question Nos. 16 to 17


Given the sequence of number $a_1, a_2, a_3, \ldots, a_{1005}$

which satisfy
$$\frac{a_1}{a_1+1} = \frac{a_2}{a_2+3} = \frac{a_3}{a_3+5} = \dots = \frac{a_{1005}}{a_{1005}+2009}$$

Also $a_1 + a_2 + a_3 + \dots + a_{1005} = 2010$

- **16.** Nature of the sequence is :
 - (a) A.P.
- (b) G.P.
- (c) A.G.P.
- (d) H.P.

- 17. 21^{st} term of the sequence is equal to :
 - (a) $\frac{86}{1005}$
- (b) $\frac{83}{1005}$
- (c) $\frac{82}{1005}$
- (d) $\frac{79}{1005}$

Exercise-4: Matching Type Problems

1.

1	Column-i		Column-II
(A)	If three unequal numbers a , b , c are in A.P. and $b-a$, $c-b$, a are in G.P., then $\frac{a^3+b^3+c^3}{3abc}$ is equal to	(P)	1
(B)	Let x be the arithmetic mean and y, z be two geometric means between any two positive numbers, then $\frac{y^3 + z^3}{2xyz}$ is equal to	(Q)	4
(C)	If a, b, c be three positive number which form three successive terms of a G.P. and $c > 4b - 3a$, then the common ratio of the G.P. can be equal to	(R)	2
(D)	Number of integral values of x satisfying inequality, $-7x^2 + 8x - 9 > 0$ is	(S)	0

2.

	Column-I		Column-II
(A)	The sequence a , b , 10, c , d are in A.P., then $a+b+c+d=$	(P)	6
(B)	Six G.M.'s are inserted between 2 and 5, if their product can be expressed as $(10)^n$. Then $n =$	(Q)	2
(C)	Let a_1 , a_2 , a_3 ,, a_{10} are in A.P. and h_1 , h_2 , h_3 ,, h_{10} are in H.P. such that $a_1 = h_1 = 1$ and $a_{10} = h_{10} = 6$, then $a_4h_7 =$	(R)	3
(D)	If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 \left(2^x - \frac{7}{2}\right)$ are in A.P., then $x = \frac{1}{2}$	(S)	20
		(T)	40

3.

	Column-I		Column-II
(A)	The number of real values of x such that three numbers 2^x , 2^{x^2} and 2^{x^3} form a non-constant arithmetic progression in that order, is	(P)	0
(B)	Let $S = (a_2 - a_3) \left(\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} \right)$	(Q)	1
	where $a_1, a_2, a_3, \ldots, a_n$ are <i>n</i> consecutive terms of an A.P. and $a_i > 0 \ \forall i \in \{1, 2, \ldots, n\}$. If $a_1 = 225$, $a_n = 400$, then the value of $S+7$ is equal to		

(C)	Let S_n denote the sum of first n terms of an non constant A.P. and $S_{2n} = 3S_n$, then $\frac{S_{3n}}{2S_n}$ is equal to	(R)	2
(D)	If t_1, t_2, t_3, t_4 and t_5 are first 5 terms of an A.P., then $\frac{4(t_1 - t_2 - t_4) + 6t_3 + t_5}{3t_1}$ is equal to	(8)	3
		(T)	4

4. Column-I contains S and **Column-II** gives last digit of S.

	Column-i		Column-II
	$S = \sum_{n=1}^{11} (2n-1)^2$	(P)	0
(B)	$S = \sum_{n=1}^{10} (2n-1)^3$	(Q)	1
(C)	$S = \sum_{n=1}^{18} (2n-1)^2 (-1)^n$	(R)	3
(D)	$S = \sum_{n=1}^{15} (2n-1)^3 (-1)^{n-1}$	(S)	5
		(T)	8

5.

1	Column-l	Column-II				
(A)	If $x, y \in R^+$ satisfy $\log_8 x + \log_4 y^2 = 5$ and $\log_8 y + \log_4 x^2 = 7$ then the value of $\frac{x^2 + y^2}{2080} =$	(P)	6			
(B)	In $\triangle ABC$ A, B, C are in A.P. and sides a, b and c are in G.P. then $a^2(b-c)+b^2(c-a)+c^2(a-b)=$	(Q)	3			
(C)	If a, b, c are three positive real numbers then the minimum value of $\frac{b+c}{a} + \frac{a+c}{b} + \frac{a+b}{c}$ is	(R)	0			
(D)	In $\triangle ABC$, $(a+b+c)(b+c-a)=\lambda bc$ where $\lambda \in I$, then greatest value of λ is	(S)	2			

6. Let $f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$ such that P(n) f(n+2) = P(n) f(n) + q(n). Where P(n), Q(n) are polynomials of least possible degree and P(n) has leading coefficient unity. Then match the following Column-I with Column-II.

	Column-l		Column-II
(A)	$\sum_{n=1}^{m} \frac{p(n)-2}{n}$	(P)	$\frac{m(m+1)}{2}$
(B)	$\sum_{n=1}^{m} \frac{q(n)-3}{2}$	(Q)	$\frac{5m(m+7)}{2}$
(C)	$\sum_{n=1}^{m} \frac{p(n) + q^{2}(n) - 11}{n}$	(R)	$\frac{3m(m+7)}{2}$
(D)	$\sum_{n=1}^{m} \frac{q^2(n) - p(n) - 7}{n}$	(S)	$\frac{m(m+7)}{2}$

Answers

- 1. $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow S$
- 2. $A \rightarrow R, B \rightarrow R, C \rightarrow P, D \rightarrow R$
- 3. $A \rightarrow P, B \rightarrow R, C \rightarrow S, D \rightarrow Q$
- 4. $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow S$
- 5. $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$
- 6. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$

-

Exercise-5: Subjective Type Problems

- **1.** Let a, b, c, d are four distinct consecutive numbers in A.P. The complete set of values of x for which $2(a-b)+x(b-c)^2+(c-a)^3=2(a-d)+(b-d)^2+(c-d)^3$ is true is $(-\infty, \alpha] \cup [\beta, \infty)$, then $|\alpha|$ is equal to :
- **2.** The sum of all digits of n for which $\sum_{r=1}^{n} r 2^r = 2 + 2^{n+10}$ is:
- 3. If $\lim_{n\to\infty} \sum_{r=1}^n \frac{r+2}{2^{r+1}r(r+1)} = \frac{1}{k}$, then k = 1
- **4.** The value of $\sum_{r=1}^{\infty} \frac{8r}{4r^4 + 1}$ is equal to :
- **5.** Three distinct non-zero real numbers form an A.P. and the squares of these numbers taken in same order form a G.P. If possible common ratio of G.P. are $3 \pm \sqrt{n}$, $n \in N$ then n =
- **6.** If $\sqrt{\underbrace{(1111.....1)}_{2n \text{ times}} \underbrace{(222.....2)}_{n \text{ times}}} = \underbrace{PPP.....P}_{n \text{ times}}$ then P =
- 7. In an increasing sequence of four positive integers, the first 3 terms are in A.P., the last 3 terms are in G.P. and the fourth term exceed the first term by 30, then the common difference of A.P. lying in interval [1, 9] is:
- **8.** The limit of $\frac{1}{n^4} \sum_{k=1}^n k(k+2)(k+4)$ as $n \to \infty$ is equal to $\frac{1}{\lambda}$, then $\lambda =$
- **9.** What is the last digit of $1+2+3+\ldots+n$ if the last digit of $1^3+2^3+\ldots+n^3$ is 1?
- **10.** Three distinct positive numbers a, b, c are in G.P., while $\log_c a$, $\log_b c$, $\log_a b$ are in A.P. with non-zero common difference d, then 2d =
- **11.** The numbers $\frac{1}{3}$, $\frac{1}{3}\log_x y$, $\frac{1}{3}\log_y z$, $\frac{1}{7}\log_z x$ are in H.P. If $y = x^r$ and $z = x^s$, then $4(r+s) = x^r$
- **12.** If $\sum_{k=1}^{\infty} \frac{k^2}{3^k} = \frac{p}{q}$; where p and q are relatively prime positive integers. Find the value of (p+q).
- **13.** The sum of the terms of an infinitely decreasing Geometric Progression (GP) is equal to the greatest value of the function $f(x) = x^3 + 3x 9$ when $x \in [-4, 3]$ and the difference between the first and second term is f'(0). The common ratio $r = \frac{p}{q}$ where p and q are relatively prime positive integers. Find (p+q).
- **14.** A cricketer has to score 4500 runs. Let a_n denotes the number of runs he scores in the n^{th} match. If $a_1 = a_2 = \dots a_{10} = 150$ and a_{10} , a_{11} , a_{12} are in A.P. with common difference (-2). If N be the total number of matches played by him to score 4500 runs. Find the sum of the digits of N.

15. If
$$x = 10 \sum_{n=3}^{100} \frac{1}{n^2 - 4}$$
, then $[x] = \{ \text{where } [\cdot] \}$ denotes greatest integer function)

- **16.** Let $f(n) = \frac{4n + \sqrt{4n^2 1}}{\sqrt{2n + 1} + \sqrt{2n 1}}$, $n \in \mathbb{N}$ then the remainder when $f(1) + f(2) + f(3) + \dots + f(60)$ is divided by 9 is.
- 17. Find the sum of series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \dots \infty$, where the terms are the reciprocals of the positive integers whose only prime factors are two's and three's:
- **18.** Let $a_1, a_2, a_3, \ldots, a_n$ be real numbers in arithmatic progression such that $a_1 = 15$ and a_2 is an integer. Given $\sum_{r=1}^{10} (a_r)^2 = 1185$. If $S_n = \sum_{r=1}^n a_r$ and maximum value of n is N for which $S_n \ge S_{(n-1)}$, then find N-10.
- 19. Let the roots of the equation $24x^3 14x^2 + kx + 3 = 0$ form a geometric sequence of real numbers. If absolute value of k lies between the roots of the equation $x^2 + \alpha^2 x 112 = 0$, then the largest integral value of α is:
- **20.** How many ordered pair(s) satisfy $\log \left(x^3 + \frac{1}{3}y^3 + \frac{1}{9}\right) = \log x + \log y$
- **21.** Let *a* and *b* be positive integers. The value of xyz is 55 and $\frac{343}{55}$ when *a*, *x*, *y*, *z*, *b* are in arithmatic and harmonic progression respectively. Find the value of (a + b)

						Answ	vers					-	
1.	8	2.	9	3.	2	4.	2	5.	8	6.	3	7.	9
8.	4	9.	1	10.	3	11.	6	12.	5	13.	5	14.	7
15.	5	16.	8	17.	3	18.	6	19.	2	20.	1	21.	8